Many oil fields are full of wind energy. At present, wind power generation technology has catered to oil fields. A larger wind turbine is used to supply power to several pumping units. As a result of the structural characteristics of the pumping unit, the efficiency of the electromotor is very low, which leads to a reduction in the utilization rate of wind energy. At the same time, considering the high cost of large wind turbines, the energy saving effect is not obvious in practical applications. This paper proposes an energy supply model of a pumping unit driven by a small wind turbine and a new wind-motor hybrid structure. Instead of wind power generation technology, wind energy drives the pumping unit directly via a mechanical–hydraulic transmission system. This new mechanical-hydraulic system can optimize the power confluence of wind and electric power. To enhance the efficiency of the motor, a mathematical model and a test station were established. The correctness of the energy conservation method and the mathematical model was verified, and the performance of the wind-motor system was studied.
Due to widespread applications of a large number of flexible structures, to obtain the best dynamic control performance of a system, optimal locations of the actuators and sensors are necessary to be determined. This article proposes a novel optimal criterion for the actuators or sensors ensuring good controllability or observability of a structure, and also considering the remaining modes to control the spillover effect. Based on the proposed optimization criteria, a non-linear integer programming genetic algorithm is employed to achieve the optimal configurations. Active vibration control is investigated for a cantilever plate with the actuators in optimal positions to suppress the specified modes utilizing linear quadratic regulator controller. Several simulation results validate the efficiency and feasibility of the proposed optimal criteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.