Background Violent behavior in patients with schizophrenia (SCZ) is a major social problem. The early identification of SCZ patients with violence can facilitate implementation of targeted intervention. Methods A total of 57 male SCZ patients were recruited into this study. The general linear model was utilized to compare differences in structural magnetic resonance imaging (sMRI) including gray matter volume, cortical surface area, and cortical thickness between 30 SCZ patients who had exhibited violence and 27 SCZ patients without a history of violence. Based on machine learning algorithms, the different sMRI features between groups were integrated into the models for prediction of violence in SCZ patients. Results After controlling for the whole brain volume and age, the general linear model showed significant reductions in right bankssts thickness, inferior parietal thickness as well as left frontal pole volume in the patients with SCZ and violence relative to those without violence. Among seven machine learning algorithms, Support Vector Machine (SVM) have better performance in differentiating patients with violence from those without violence, with its balanced accuracy and area under curve (AUC) reaching 0.8231 and 0.841, respectively. Conclusions Patients with SCZ who had a history of violence displayed reduced cortical thickness and volume in several brain regions. Based on machine learning algorithms, structural MRI features are useful to improve predictive ability of SCZ patients at particular risk of violence.
BackgroundEarly to identify male schizophrenia patients with violence is important for the performance of targeted measures and closer monitoring, but it is difficult to use conventional risk factors. This study is aimed to employ machine learning (ML) algorithms combined with routine data to predict violent behavior among male schizophrenia patients. Moreover, the identified best model might be utilized to calculate the probability of an individual committing violence.MethodWe enrolled a total of 397 male schizophrenia patients and randomly stratified them into the training set and the testing set, in a 7:3 ratio. We used eight ML algorithms to develop the predictive models. The main variables as input features selected by the least absolute shrinkage and selection operator (LASSO) and logistic regression (LR) were integrated into prediction models for violence among male schizophrenia patients. In the training set, 10 × 10-fold cross-validation was conducted to adjust the parameters. In the testing set, we evaluated and compared the predictive performance of eight ML algorithms in terms of area under the curve (AUC) for the receiver operating characteristic curve.ResultOur results showed the prevalence of violence among male schizophrenia patients was 36.8%. The LASSO and LR identified main risk factors for violent behavior in patients with schizophrenia integrated into the predictive models, including lower education level [0.556 (0.378–0.816)], having cigarette smoking [2.121 (1.191–3.779)], higher positive syndrome [1.016 (1.002–1.031)] and higher social disability screening schedule (SDSS) [1.081 (1.026–1.139)]. The Neural Net (nnet) with an AUC of 0.6673 (0.5599–0.7748) had better prediction ability than that of other algorithms.ConclusionML algorithms are useful in early identifying male schizophrenia patients with violence and helping clinicians take preventive measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.