Aims Pinus massoniana is one of the most widely distributed forest plants in China. In this study, we isolated a bacterial endophyte (designated FBS135) from apical buds and needles of P. massoniana. Investigations were performed to understand the effects of the strain on pine growth, its genomic features and the functions of the plasmids it carries. Methods and Results Based on its morphological features and 16S rRNA sequence, strain FBS135 was primarily identified as Pantoea eucalypti. We found that FBS135 not only promoted the growth of P. massoniana seedlings, but also significantly increased the survival rate of pine seedlings. The whole genome of FBS135 was sequenced, which revealed that the bacterium carries one chromosome and four plasmids. Its chromosome is 4 023 751 bp in size and contains dozens of genes involved in plant symbiosis. Curing one of the four plasmids, pPant1, resulted in a decrease in the size of the FBS135 colonies and the loss of the ability to synthesize yellow pigment, indicating that this plasmid may be very important for FBS135. Conclusions Pantoea eucalypti FBS135 has a genomic basis to be implicated in plant‐associated lifestyle and was established to have the capability to promote pine growth. Significance and Impact of the Study To the best of our knowledge, this is the first report that such a bacterial species, P. eucalypti, was isolated from pine trees and evidenced to have pine beneficial activities. Our results elucidate the ecological effects of endophytes on forest plants as well as endophyte–plant interaction mechanisms.
Endophytes in woody plants are much less understood. Pantoea strain FBS135 is an endophytic bacterium isolated from Pinus massoniana with the ability to promote pine growth significantly. In this study, we demonstrated that FBS135 has the astonishing ability of low nitrogen tolerance but no ability of nitrogen fixation. To exactly determine the phylogenetic status of FBS135, we sequenced the whole genomes of P. eucalypti LMG 24197T and P. vagans 24199T, type strains of two Pantoea species, which are evolutionarily closest to FBS135. P. eucalypti LMG 24197T contained a single chromosome of 4,035,995 bp (C+G, 54.6%) plus three circular plasmids while LMG 24199T comprises a single circular chromosome of 4,050,173 bp (C+G, 55.6%) and two circular plasmids. With the genomic information, FBS135 was finally identified as a P. eucalypti strain, although it showed some different physiological traits from the two type strains. Comparative genomic analyses were performed for the three strains, revealing their common molecular basis associated with plant lifecycle as well as the differences in their gene arrangements relating to nitrogen utilization.
Fungi are an attractive food source for predators such as fungivorous nematodes. Several fungal defense proteins and their protective mechanisms against nematodes have been described. Many of these proteins are lectins which are stored in the cytoplasm of the fungal cells and bind to specific glycan epitopes in the digestive tract of the nematode upon ingestion. Here, we studied two novel nematotoxic proteins with lipase domains from the model mushroom Coprinopsis cinerea. These cytoplasmically localized proteins were found to be induced in the vegetative mycelium of C. cinerea upon challenge with fungivorous nematode Aphelenchus avenae. The proteins showed nematotoxicity when heterologously expressed in E. coli and fed to several bacterivorous nematodes. Site-specific mutagenesis of predicted catalytic residues eliminated the in-vitro lipase activity of the proteins and significantly reduced their nematotoxicity, indicating the importance of the lipase activity for the nematotoxicity of these proteins. Our results suggest that cytoplasmic lipases constitute a novel class of fungal defense proteins against predatory nematodes. These findings improve our understanding of fungal defense mechanisms against predators and may find applications in the control of parasitic nematodes in agriculture and medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.