PurposeThe purpose of this study is to simultaneously determine the constitutive parameters and boundary conditions by solving inverse mechanical problems of power hardening elastoplastic materials in three-dimensional geometries.Design/methodology/approachThe power hardening elastoplastic problem is solved by the complex variable finite element method in software ABAQUS, based on a three-dimensional complex stress element using user-defined element subroutine. The complex-variable-differentiation method is introduced and used to accurately calculate the sensitivity coefficients in the multiple parameters identification method, and the Levenberg–Marquardt algorithm is applied to carry out the inversion.FindingsNumerical results indicate that the complex variable finite element method has good performance for solving elastoplastic problems of three-dimensional geometries. The inversion method is effective and accurate for simultaneously identifying multi-parameters of power hardening elastoplastic problems in three-dimensional geometries, which could be employed for solving inverse elastoplastic problems in engineering applications.Originality/valueThe constitutive parameters and boundary conditions are simultaneously identified for power hardening elastoplastic problems in three-dimensional geometries, which is much challenging in practical applications. The numerical results show that the inversion method has high accuracy, good stability, and fast convergence speed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.