During postnatal development, sensory experiences play critical roles in the refinement of cortical connections. However, both the process of postnatal experience-dependent maturation of neocortical inhibitory networks and its underlying mechanisms remain elusive. Here, we examined the differential properties of intracortical inhibitory networks of layer IV in "sensory-spared" and "sensorydeprived" cortices of glutamate acid decarboxylase 67 (GAD67)-green fluorescent protein (GFP) (⌬neo) and wild-type mouse. Our results showed that row D whisker trimming (WT) begun at postnatal day 7 (P7), but not after P15, induced a robust reduction of parvalbumin (PV) expression, measured by the PV/GFP ratio and PV cell densities, in the deprived barrels. WT also induced a robust reduction in the number of inhibitory perisomatic varicosities and synaptic GAD65/67 immunoreactivities in spiny neurons of the deprived barrels. Although the GAD65/67 expressions in interneurons were also downregulated in the deprived barrels, the GFP expression remained unchanged. Patch-clamp recording from spiny cells showed a 1.5-fold reduction of intracortical evoked IPSCs (eIPSCs) in deprived versus spared cortices. The reduction in eIPSCs occurred via changes in presynaptic properties and unitary IPSC amplitudes. Miniature IPSCs showed subtle but significant differences between the two experimental conditions. In addition, properties of the IPSCs in deprived barrels resemble those of IPSCs recorded in immature brains (P7). Together, these results suggest that the properties of local intracortical inhibitory networks are modified by sensory experiences. Perisomatic inhibition mediated by PV-positive basket cells is pruned by sensory deprivation.
This study focused on the cytoarchitectonic and morphological differences in GABA-releasing interneurons between adult Fmr1 knock-out (FMR1KO) and wild-type (WT) mice in the somatosensory cortex. Our results showed a robust reorganization of neocortical, but not hippocampal inhibitory circuits in the FMR1KO mouse. The reorganization is characterized by a significant reduction (20%, p<0.001) in the densities of parvalbumin (PV)-positive, but not calbindin (CB) and calretinin (CR)-positive interneurons. A significant enlargement of soma size and an altered lamina distribution of PV but not CR and CB cells was also observed. Additionally, there was a modest but significant increase in TrkB-immunoreactivity in PV-positive cells in the FMR1KO mouse. These results provide the first report showing significant alterations of GABA-releasing interneurons in the mouse model of fragile-X syndrome. Uncovering the changes in specific GABAergic inhibitory circuits could help understand mechanisms underlying the behavior deficits of fragile-X syndrome. KeywordsGABA; inhibitory network; FMR1; somatosensory cortex Fragile X syndrome (FXS) is the number one inherited cause of mental retardation affecting 1 in 4000 males and 1 in 8000 females (Crawford et al., 2001). Behavioral deficits of FXS include mental retardation, attention deficit, hyperactivity, anxiety, autistic behaviors and an increased incidence of epilepsy (Bear et al., 2004;Grossman et al., 2006;Frankland et al., 2004). One of the most common clinical features of FXS is heightened sensitivity to sensory stimulation (or sensory defensiveness; Miller et al., 1999;Chen and Toth, 2001; Miller, 2006). Altered sensitivity to sensory stimulation might reflect underlying abnormalities in the sensory circuits. Anatomical analyses of dendritic spine properties in adult FXS patients and FMRP KO mice have consistently demonstrated various abnormalities in the length and shape of dendritic spines of cortical excitatory neurons (Galvez et al., 2003; Irwin et al., 2000; Hinton et al., 1991). Balanced excitation and inhibition is critical for maintaining the integrity and function of neocortical circuits (Jiao et al., 2006). Deficit in GABAergic inhibitory system have been linked to epilepsy, autistic-like syndromes and sensory motor gating (Levitt, 2005). To our knowledge, there are no reports available on the effects of FMRP on the GABA-ergic interneurons. In a few recent studies, reduced expression of GABA A receptors, or enhanced * Author of correspondence email neuron@uwyo.edu, telephone 307 766 5602, fax 307 766 5526.. Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclai...
To facilitate the study of the CaMKIIα function in vivo, a CaMKIIα-GFP transgenic mouse line was generated. Here, our goal is to provide the first neuroanatomical characterization of GFP expression in the CNS of this line of mouse. Overall, CaMKIIα -GFP expression is strong and highly heterogeneous, with the dentate gyrus of the hippocampus as the most abundantly expressed region. In the hippocampus, around 70% of granule and pyramidal neurons expressed strong GFP. In the neocortex, presumed pyramidal neurons were GFP positive: around 32% of layer II/III and 35% of layer VI neurons expressed GFP, and a lower expression rate was found in other layers. In the thalamus and hypothalamus, strong GFP signals were detected in the neuropil. GFP-positive cells were also found in many other regions such as the spinal trigeminal nucleus, cerebellum and basal ganglia. We further compared the GFP expression with specific antibody staining for CaMKIIα and GABA. We found that GFP+ neurons were mostly positive for CaMKIIα-IR throughout the brain, with some exceptions throughout the brain, especially in the deeper layers of neocortex. GFP and GABA-IR marked distinct neuronal populations in most brain regions with the exception of granule cells in the olfactory bulb, purkinje cells in the cerebellar, and some layer I cells in neocortex. In conclusion, GFP expression in the CaMKIIα-GFP mice is similar to the endogenous expression of CaMKIIα protein, thus these mice can be used in in vivo and in vitro physiological studies in which visualization of CaMKIIα- neuronal populations is required.
Mechanisms underlying experience-dependent refinement of cortical connections, especially GABAergic inhibitory circuits, are unknown. By using a line of mutant mice that lack activity-dependent BDNF expression (bdnf-KIV), we show that experience regulation of cortical GABAergic network is mediated by activity-driven BDNF expression. Levels of endogenous BDNF protein in the barrel cortex are strongly regulated by sensory inputs from whiskers. There is a severe alteration of excitation and inhibition balance in the barrel cortex of bdnf-KIV mice as a result of reduced inhibitory but not excitatory conductance. Within the inhibitory circuits, the mutant barrel cortex exhibits significantly reduced levels of GABA release only from the parvalbumin-expressing fast-spiking (FS) interneurons, but not other interneuron subtypes. Postnatal deprivation of sensory inputs markedly decreased perisomatic inhibition selectively from FS cells in wild-type but not bdnf-KIV mice. These results suggest that postnatal experience, through activity-driven BDNF expression, controls cortical development by regulating FS cellmediated perisomatic inhibition in vivo.neurotrophin | plasticity | brain derived neurotrophic factor
The neural circuits of the piriform cortex mediate field potential oscillations and complex functions related to integrating odor cues with behavior, affective states, and multisensory processing. Previous anatomical studies have established major neural pathways linking the piriform cortex to other cortical and subcortical regions and major glutamatergic and GABAergic neuronal subtypes within the piriform circuits. However, the quantitative properties of diverse piriform interneurons are unknown. Using quantitative neural anatomical analysis and electrophysiological recording applied to a GAD65-EGFP transgenic mouse expressing GFP (green fluorescent protein) under the control of the GAD65 promoter, here we report a novel inhibitory network that is composed of neurons positive for GAD65-EGFP in the posterior piriform cortex (PPC). These interneurons had stereotyped dendritic and axonal properties that were distinct from basket cells or interneurons expressing various calcium-binding proteins (parvalbumin, calbindin, and calretinin) within the PPC. The GAD65-GFP neurons are GABAergic and outnumbered any other interneurons (expressing parvalbumin, calbindin, and calretinin) we studied. The firing pattern of these interneurons was highly homogenous and is similar to the regular-spiking nonpyramidal (RSNP) interneurons reported in primary sensory and other neocortical regions. Robust dye coupling among these interneurons and expression of connexin 36 suggested that they form electrically coupled networks. The predominant targets of descending axons of these interneurons were the dendrites of Layer III principal cells. Additionally, synapses were found on dendrites and somata of deep Layer II principal neurons and Layer III basket cells. A similar interneuronal subtype was also found in GAD65-EGFP-negative mouse. The extensive dendritic bifurcation at superficial lamina IA among horizontal afferent fibers and unique axonal targeting pattern suggests that these interneurons may play a role in direct feedforward inhibitory and disinhibitory olfactory processing. We conclude that the GAD65-GFP neurons may play distinct roles in regulating information flow and olfactory-related oscillation within the PPC in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.