The paper addresses the forecasting of realised volatility for financial time series using the heterogeneous autoregressive model (HAR) and machine learning techniques. We consider an extended version of the existing HAR model with included purified implied volatility. For this extended model, we apply the random forests algorithm for the forecasting of the direction and the magnitude of the realised volatility. In experiments with historical high frequency data, we demonstrate improvements of forecast accuracy for the proposed model.
The paper studies the modeling of time series with the prescribed dependence of the volatility on the sampling frequency. This dependence is often observed for financial time series. We suggest to model the dependence of volatility on sampling frequency via delay equations for the underlying prices. It appears that these equations allow to model the price processes with volatility that increases when the sampling rates increase. In addition, these equations are able to model the inverse phenomena where the volatility decreases with the increase in sampling frequencies.
The paper studies methods of dynamic estimation of volatility for financial time series. We suggest to estimate the volatility as the implied volatility inferred from some artificial "dynamically purified" price process that in theory allows to eliminate the impact of the stock price movements. The complete elimination would be possible if the option prices were available for continuous sets of strike prices and expiration times. In practice, we have to use only finite sets of available prices. We discuss the construction of this process from the available option prices using different methods. In order to overcome the incompleteness of the available option prices, we suggests several interpolation approaches, including the first order Taylor series extrapolation and quadratic interpolation. We examine the potential of the implied volatility derived from this proposed process for forecasting of the future volatility, in comparison with the traditional implied volatility process such as the volatility index VIX.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.