Currently, quantum hardware is restrained by noises and qubit numbers. Thus, a quantum virtual machine that simulates operations of a quantum computer on classical computers is a vital tool for developing and testing quantum algorithms before deploying them on real quantum computers. Various variational quantum algorithms have been proposed and tested on quantum virtual machines to surpass the limitations of quantum hardware. Our goal is to exploit further the variational quantum algorithms towards practical applications of quantum machine learning using state-of-the-art quantum computers. In this paper, we first introduce a quantum virtual machine named Qsun, whose operation is underlined by quantum state wavefunctions. The platform provides native tools supporting variational quantum algorithms. Especially using the parameter-shift rule, we implement quantum differentiable programming essential for gradient-based optimization. We then report two tests representative of quantum machine learning: quantum linear regression and quantum neural network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.