Nanoparticle scattering layer based on polymer-metal oxide composite is successfully introduced to enhance the light extraction efficiency of organic light emitting diodes (OLEDs). We find that the density and the distribution of nanoparticles is the key factor to maximize the light extraction efficiency of pristine OLEDs by out-coupling the unusable light with the scattering film. In our experiment, 71 wt% of Al(2)O(3) mixed with polymer matrix shows the increase of light extraction efficiency of 40%. This method is expected to play a critical role to create the low-power OLED application such as OLED lightings with simple fabrication process and low cost.
Random Al2O3 nanoparticle-based polymer composite films are investigated as external scattering layers to enhance light extraction from flexible organic light-emitting diodes (OLEDs). We found that the size and concentration of the nanoparticles (NPs) in the polymer film play a crucial role in improving light extraction. It turned out that their increase has a favorable impact on the light output of the devices, as the high concentration of the NPs leads to the formation of large nanoparticle clusters, which, in turn, yield pore-containing films. As a result, light extraction efficiency of the flexible OLEDs on PEN substrates was enhanced by a factor of 1.65 by the incorporation of the scattering layer, with the highest Al2O3 NP concentration of 99 wt%. This outcome is attributed to the reduction of the waveguide mode and total internal reflection at the substrate/air interface induced by the randomly distributed NPs in the flexible scattering layer. Our work demonstrates an efficient, solution-processable, and low-cost light-outcoupling structure for large-area and flexible OLED applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.