To develop a more efficient and optimal artificial kidney, many experimental approaches have been used to study mass transfer inside, outside, and cross hollow fiber membranes with different kinds of membranes, solutes, and flow rates as parameters. However, these experimental approaches are expensive and time consuming. Numerical calculation and computer simulation is an effective way to study mass transfer in the artificial kidney, which can save substantial time and reduce experimental cost. This paper presents a new model to simulate mass transfer in artificial kidney by coupling together shell-side, lumen-side, and transmembrane flows. Darcy's equations were employed to simulate shell-side flow, Navier-Stokes equations were employed to simulate lumen-side flow, and Kedem-Katchalsky equations were used to compute transmembrane flow. Numerical results agreed well with experimental results within 10% error. Numerical results showed the nonuniform distribution of flow and solute concentration in shell-side flow due to the entry/exit effect and Darcy permeability. In the shell side, the axial velocity in the periphery is higher than that in the center. This numerical model presented a clear insight view of mass transfer in an artificial kidney and may be used to help design an optimal artificial kidney and its operation conditions to improve hemodialysis.
Hydrogel nanocomposites are attractive biomaterials for numerous applications including tissue engineering, drug delivery, cancer treatment, sensors, and actuators. Here we present a nanocomposite of multiwalled carbon nanotubes (MWCNT) and temperature responsive N-isopropylacrylamide hydrogels. The lower critical solution temperature (LCST) of the nanocomposites was tailored for physiological applications by the addition of varying amounts of acrylamide (AAm). The addition of nanotubes contributed to interesting properties, including tailorability of temperature responsive swelling and mechanical strength of the resultant nanocomposites. The mechanical properties of the nanocomposites were studied over a range of temperatures (25-55 C) to characterize the effect of nanotube addition. A radiofrequency (RF) field of 13.56 MHz was applied to the nanocomposite discs, and the resultant heating was characterized using infrared thermography. This is the first report on the use of RF to remotely heat MWCNThydrogel nanocomposites.
Recent clinical data indicate both ultrafiltration rate (Qf) and timing of treatment initiation in continuous renal replacement therapy (CRRT) and therapy frequency in intermittent hemodialysis (HD) influence survival in critically ill patients with acute renal failure (ARF). In this study, kinetic modeling is used to compare effective dose delivery by three acute dialysis therapies: continuous venovenous hemofiltration (CVVH), daily HD, and sustained low-efficiency dialysis (SLED). A modified equivalent renal clearance (EKR) approach to account for the initial unsteady-state stage during dialysis is employed. Effective small solute clearance in CVVH is found to be 8% and 60% higher than in SLED and daily HD, respectively. Differences are more pronounced for middle and large solute categories, and EKR in CVVH is approximately 2-fold and 4-fold greater than the corresponding values in daily HD and SLED, respectively. The superior middle and large solute removal for CVVH is due to the powerful combination of convection and continuous operation. In CVVH, a decrease in the initial BUN from 150 to 50 mg/dL is predicted to decrease TAC and, therefore, increase EKR by approximately 35%. After clinical validation, the quantification method presented in this article could be a useful tool to assist in the dialytic management of critically ill ARF patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.