The fate of a hole injected in an antiferromagnet is an outstanding issue of strongly correlated physics. It provides important insights into doped Mott insulators closely related to high-temperature superconductivity. Here, we report a systematic numerical study of t-J ladder systems based on the density matrix renormalization group. It reveals a surprising result for the single hole's motion in an otherwise well-understood undoped system. Specifically, we find that the common belief of quasiparticle picture is invalidated by the self-localization of the doped hole. In contrast to Anderson localization caused by disorders, the charge localization discovered here is an entirely new phenomenon purely of strong correlation origin. It results from destructive quantum interference of novel signs picked up by the hole, and since the same effect is of a generic feature of doped Mott physics, our findings unveil a new paradigm which may go beyond the single hole doped system.
PurposeIn cancer patients, tumor gene mutations contribute to drug resistance and treatment failure. In patients with metastatic breast cancer (MBC), these mutations increase after multiline treatment, thereby decreasing treatment efficiency. The aim of this study was to evaluate gene mutation patterns in MBC patients to predict drug resistance and disease progression.MethodA total of 68 MBC patients who had received multiline treatment were recruited. Circulating tumor DNA (ctDNA) mutations were evaluated and compared among hormone receptor (HR)/human epidermal growth factor receptor 2 (HER2) subgroups.ResultsThe baseline gene mutation pattern (at the time of recruitment) varied among HR/HER2 subtypes. BRCA1 and MED12 were frequently mutated in triple negative breast cancer (TNBC) patients, PIK3CA and FAT1 mutations were frequent in HR+ patients, and PIK3CA and ERBB2 mutations were frequent in HER2+ patients. Gene mutation patterns also varied in patients who progressed within either 3 months or 3–6 months of chemotherapy treatment. For example, in HR+ patients who progressed within 3 months of treatment, the frequency of TERT mutations significantly increased. Other related mutations included FAT1 and NOTCH4. In HR+ patients who progressed within 3–6 months, PIK3CA, TP53, MLL3, ERBB2, NOTCH2, and ERS1 were the candidate mutations. This suggests that different mechanisms underlie disease progression at different times after treatment initiation. In the COX model, the ctDNA TP53 + PIK3CA gene mutation pattern successfully predicted progression within 6 months.ConclusionctDNA gene mutation profiles differed among HR/HER2 subtypes of MBC patients. By identifying mutations associated with treatment resistance, we hope to improve therapy selection for MBC patients who received multiline treatment.
As the desire to explore opaque materials is ordinarily frustrated by multiple scattering of waves, attention has focused on the transmission matrix of the wave field. This matrix gives the fullest account of transmission and conductance and enables the control of the transmitted flux; however, it cannot address the fundamental issue of the spatial profile of eigenchannels of the transmission matrix inside the sample. Here we obtain a universal expression for the average disposition of energy of transmission eigenchannels within random diffusive systems in terms of auxiliary localization lengths determined by the corresponding transmission eigenvalues. The spatial profile of each eigenchannel is shown to be a solution of a generalized diffusion equation. These results reveal the rich structure of transmission eigenchannels and enable the control of the energy distribution inside random media.
We report a first-principles study of static transport of localized waves in quasi-one-dimensional open media. We find that such transport, dominated by disorder-induced resonant transmissions, displays novel diffusive behavior. Our analytical predictions are entirely confirmed by numerical simulations. We show that the prevailing self-consistent localization theory [B. A. van Tiggelen, Phys. Rev. Lett. 84, 4333 (2000)] is valid only if disorder-induced resonant transmissions are negligible. Our findings open a new direction in the study of Anderson localization in open media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.