Diabetes is associated with β-cell failure. But it remains unclear whether the latter results from reduced β-cell number or function. FoxO1 integrates β-cell proliferation with adaptive β-cell function. We interrogated the contribution of these two processes to β-cell dysfunction, using mice lacking FoxO1 in β-cells. FoxO1 ablation caused hyperglycemia with reduced β-cell mass following physiologic stress, such as multiparity and aging. Surprisingly, lineage-tracing experiments demonstrated that loss of β-cell mass was due to β-cell dedifferentiation, not death. Dedifferentiated β-cells reverted to progenitor-like cells expressing Neurogenin3, Oct4, Nanog, and L-Myc. A subset of FoxO1-deficient β-cells adopted the α-cell fate, resulting in hyperglucagonemia. Strikingly, we identify the same sequence of events as a feature of different models of murine diabetes. We propose that dedifferentiation trumps endocrine cell death in the natural history of β-cell failure, and suggest that treatment of β-cell dysfunction should restore differentiation, rather than promoting β-cell replication.
Restoration of regulated insulin secretion is the ultimate goal of type 1 diabetes therapy. Here we show that, surprisingly, somatic ablation of Foxo1 in Neurog3+ enteroendocrine progenitor cells gives rise to gut insulin-positive cells (Ins+) that express markers of mature β-cells, and secrete bioactive insulin as well as C-peptide in response to glucose and sulfonylureas. Lineage tracing experiments show that gut Ins+ cells arise cell-autonomously from Foxo1-deficient cells. Inducible Foxo1 ablation in adult mice also results in the generation of gut Ins+ cells. Following ablation by the β-cell toxin, streptozotocin, gut Ins+ cells regenerate and produce insulin, reversing hyperglycemia in mice. The data indicate that Neurog3+ enteroendocrine progenitors require active Foxo1 to prevent differentiation into Ins+ cells. Foxo1 ablation in gut epithelium may provide an approach to restore insulin production in type 1 diabetes.
We review mechanisms of β-cell failure in type 2 diabetes. A wealth of information indicates that it is caused by impaired insulin secretion and decreased β-cell mass. Interestingly, there appears to be a link between these two mechanisms. The earliest reaction to peripheral insulin resistance is an increase in insulin production, owing primarily to increased secretion, and to a lesser extent to decreased clearance. Experimental animal models indicate that hyperinsulinaemia promotes an increase in β-cell mass, largely via increased β-cell replication. In contrast, following the onset of overt diabetes, there is a slowly progressive loss of β-cell function and mass, both in animal models and in diabetic humans. It is of great interest that most diabetes-associated genes identified in genome-wide association studies appear to be enriched in the β-cell and to have the potential to regulate mass and/or function. Here, we review evidence derived from experimental animal models to unravel the mechanisms underlying β-cell dysfunction. We focus primarily on signalling pathways, as opposed to nutrient sensing, and specifically on the notion that insulin and growth factor signalling via Foxo1 in pancreatic β-cells links insulin secretion with cellular proliferation and survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.