Spectral features in remote sensing images are extensively utilized to detect land cover changes. However, detection noise appearing in the changing maps due to the abundant spatial details in the high-resolution images makes it difficult to acquire an accurate interpretation result. In this paper, an object-oriented change detection approach is proposed which integrates spectral–spatial–saliency change information and fuzzy integral decision fusion for high-resolution remote sensing images with the purpose of eliminating the impact of detection noise. First, to reduce the influence of feature uncertainty, spectral feature change is generated by three independent methods, and spatial change information is obtained by spatial feature set construction and the optimal feature selection strategy. Secondly, the saliency change map of bi-temporal images is obtained with the co-saliency detection method to complement the insufficiency of image features. Then, the image objects are acquired by multi-scale segmentation based on the staking images. Finally, different pixel-level image change information and the segmentation result are fused using the fuzzy integral decision theory to determine the object change probability. Three high-resolution remote sensing image datasets and three comparative experiments were carried out to evaluate the performance of the proposed algorithm. Spectral–spatial–saliency change information was found to play a major role in the change detection of high-resolution remote sensing images, and the fuzzy integral decision strategy was found to effectively obtain reliable changed objects to improve the accuracy and robustness of change detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.