This paper presents a single-inductor boost converter for thermoelectric energy harvesting. A two-stages startup circuit with a three-phase operation is adopted to obtain self-startup with a single inductor. To extract the maximum energy, a coarse- and fine-tuning MPPT is proposed to adaptively and effectively track the internal source resistance. By designing a zero-current detector, the synchronization loss is reduced, which significantly improves the peak efficiency. The boost converter is implemented in a 0.18-μm standard CMOS process. Simulation results show that the converter self-starts the operation from a TEG voltage of 128 mV and achieves 88% peak efficiency, providing a maximum output power of 3.78 mW. The improved MPPT enables the converter to sustain the operation at an input voltage as low as 7.5 mV after self-startup.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.