Surgical Site Infection (SSI) is a national priority in healthcare research. Much research attention has been attracted to develop better SSI risk prediction models. However, most of the existing SSI risk prediction models are built on static risk factors such as comorbidities and operative factors. In this paper, we investigate the use of the dynamic wound data for SSI risk prediction. There have been emerging mobile health (mHealth) tools that can closely monitor the patients and generate continuous measurements of many wound-related variables and other evolving clinical variables. Since existing prediction models of SSI have quite limited capacity to utilize the evolving clinical data, we develop the corresponding solution to equip these mHealth tools with decision-making capabilities for SSI prediction with a seamless assembly of several machine learning models to tackle the analytic challenges arising from the spatial-temporal data. The basic idea is to exploit the low-rank property of the spatial-temporal data via the bilinear formulation, and further enhance it with automatic missing data imputation by the matrix completion technique. We derive efficient optimization algorithms to implement these models and demonstrate the superior performances of our new predictive model on a real-world dataset of SSI, compared to a range of state-of-the-art methods.
We study the problem of efficient exact partitioning of the hypergraphs generated by highorder planted models. A high-order planted model assumes some underlying cluster structures, and simulates high-order interactions by placing hyperedges among nodes. Example models include the disjoint hypercliques, the densest subhypergraphs, and the hypergraph stochastic block models. We show that exact partitioning of high-order planted models (a NP-hard problem in general) is achievable through solving a computationally efficient convex optimization problem with a tensor nuclear norm constraint. Our analysis provides the conditions for our approach to succeed on recovering the true underlying cluster structures, with high probability. IntroductionOn a higher level, a planted model simulates interactions among various groups of entities in a network. Typical planted models assume that nodes are grouped into a number of clusters, and each pair of nodes is connected randomly with some probability related to the cluster membership. The generative and non-deterministic nature makes planted models of both theoretical and practical interests in the field of community detection, data mining, engineering, biology, among others. Various classical planted models have been studied extensively in recent years. This includes, for instance, the stochastic block models (SBMs) [
We describe the neural machine translation system submitted by the University of Rochester to the Chinese-English language pair for the WMT 2017 news translation task. We applied unsupervised word and subword segmentation techniques and deep learning in order to address (i) the word segmentation problem caused by the lack of delimiters between words and phrases in Chinese and (ii) the morphological and syntactic differences between Chinese and English. We integrated promising recent developments in NMT, including back-translations, language model reranking, subword splitting and minimum risk tuning.
In this paper, we study the problem of recovering the community structure of a network under federated myopic learning. Under this paradigm, we have several clients, each of them having a myopic view, i.e., observing a small subgraph of the network. Each client sends a censored evidence graph to a central server. We provide an efficient algorithm, which computes a consensus signed weighted graph from clients evidence, and recovers the underlying network structure in the central server. We analyze the topological structure conditions of the network, as well as the signal and noise levels of the clients that allow for recovery of the network structure. Our analysis shows that exact recovery is possible and can be achieved in polynomial time. We also provide information-theoretic limits for the central server to recover the network structure from any single client evidence. Finally, as a byproduct of our analysis, we provide a novel Cheeger-type inequality for general signed weighted graphs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.