Herein we present a new structural design of hole-transporting material, Trux-OMeTAD, which consists of a C3h Truxene-core with arylamine terminals and hexyl side-chains. This planar, rigid, and fully conjugated molecule exhibits excellent hole mobility and desired surface energy to the perovskite uplayer. Perovskite solar cells fabricated using the p-i-n architecture with Trux-OMeTAD as the p-layer, show a high PCE of 18.6% with minimal hysteresis.
Two hole‐extraction materials (HEMs), TPP‐OMeTAD and TPP‐SMeTAD, have been developed to facilitate the fabrication of efficient p‐i‐n perovskite solar cells (PVSCs). By replacing the oxygen atom on HEM with sulfur (from TPP‐OMeTAD to TPP‐SMeTAD), it effectively lowers the highest occupied molecular orbital of the molecule and provides stronger PbS interaction with perovskites, leading to efficient charge extraction and surface traps passivation. The TPP‐SMeTAD‐based PVSCs exhibit both improved photovoltaic performance and reduced hysteresis in p‐i‐n PVSCs over those based on TPP‐OMeTAD. This work not only provides new insights on creating perovskite‐HEM heterojunction but also helps in designing new HEM to enable efficient organic–inorganic hybrid PVSCs.
Despite pharmaceuticals being widely detected in water-bodies worldwide, what remain unclear are the effects of high pharmaceutical concentrations on the treatment efficiency of biological wastewater treatment processes, such as membrane bioreactor (MBR) systems. This study investigated the efficiency of MBR technology in the treatment of synthetic wastewater containing a mixture of five typical pharmaceuticals (ofloxacin, sulfamethoxazole, sulfamethylthiadiazole, carbamazepine and naproxen) with a total concentration of 500 µg/L. Both the control MBR (MBRc) without pharmaceutical dosing and the MBR operated with high influent pharmaceutical concentrations (MBRe) were operated under room temperature with the same hydraulic retention time of 11 h and the same sludge retention time of 30 d. The removal efficiency rates of total nitrogen and total phosphorus were 83.2% vs. 90.1% and 72.6% vs. 57.8% in the MBRc vs. MBRe systems, and both MBRs achieved >98% removal of organics for a 180-day period. The floc size decreased, and membrane fouling became more severe in the MBRe system. Microbial diversity increased in the MBRe system and the relative abundances of functional microbe differed between the two MBRs. Furthermore, the total relative abundances of genes involved in glycolysis, assimilating nitrate reduction and nitrification processes increased in the MBRe system, which could account for the higher organics and nitrogen removal performance. This work provides insights for MBR operation in wastewater treatment with high pharmaceutical concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.