Human adenovirus type 3 (HAdV-3) is a causative agent of acute respiratory disease, which is prevalent throughout the world, especially in Asia. Here, the complete genome sequences of two field strains of HAdV-3 (strains GZ1 and GZ2) isolated from children with acute respiratory infection in southern China are reported (GenBank accession nos DQ099432 and DQ105654, respectively). The genomes were 35 273 bp (GZ1) and 35 269 bp (GZ2) and both had a G+C content of 51 mol%. They shared 99 % nucleotide identity and the four early and five late regions that are characteristic of human adenoviruses. Thirty-nine protein-and two RNA-coding sequences were identified in the genome sequences of both strains. Protein pX had a predicted molecular mass of 8?3 kDa in strain GZ1; this was lower (7?6 kDa) in strain GZ2. Both strains contained 10 short inverted repeats, in addition to their inverted terminal repeats (111 bp). Comparative whole-genome analysis revealed 93 mismatches and four insertions/deletions between the two strains. Strain GZ1 infection produced a typical cytopathic effect, whereas strain GZ2 did not; non-synonymous substitutions in proteins of GZ2 may be responsible for this difference. The GenBank/EMBL/DDBJ accession numbers for the human adenovirus type 3 strain GZ1 and GZ2 sequences reported in this paper are DQ099432 and DQ105654, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.