Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSC-EVs) have been recognized as a promising cell-free therapy for acute kidney injury (AKI), which avoids safety concerns associated with direct cell engraftment. However, low stability and retention of MSC-EVs have limited their therapeutic efficacy. RGD (Arg-Gly-Asp) peptide binds strongly to integrins, which have been identified on the surface of MSC-EV membranes; yet RGD has not been applied to EV scaffolds to enhance and prolong bioavailability. Here, we developed RGD hydrogels, which we hypothesized could augment MSC-EV efficacy in the treatment of AKI models. In vivo tracking of the labeled EVs revealed that RGD hydrogels increased retention and stability of EVs. Integrin gene knockdown experiments confirmed that EV−hydrogel interaction was mediated by RGD−integrin binding. Upon intrarenal injection into mouse AKI models, EV-RGD hydrogels provided superior rescuing effects to renal function, attenuated histopathological damage, decreased tubular injury, and promoted cell proliferation in early phases of AKI. RGD hydrogels also augmented antifibrotic effects of MSC-EVs in chronic stages. Further analysis revealed that the presence of microRNA let-7a-5p in MSC-EVs served as the mechanism contributing to the reduced cell apoptosis and elevated cell autophagy in AKI. In conclusion, RGD hydrogels facilitated MSC-derived let-7a-5p-containing EVs, improving reparative potential against AKI. This study developed an RGD scaffold to increase the EV integrin-mediated loading and in turn improved therapeutic efficacy in renal repair; therefore this strategy shed light on MSC-EV application as a cell-free treatment for potentiated efficiency.
Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) have been shown to stimulate regeneration in the treatment of kidney injury. Renal regeneration is also thought to be stimulated by the activation of Sox9+ cells. However, whether and how the activation mechanisms underlying EV treatment and Sox9+ cell-dependent regeneration intersect is unclear. We reasoned that a high-resolution imaging platform in living animals could help to untangle this system. To test this idea, we first applied EVs derived from human placenta-derived MSCs (hP-MSCs) to a Sox9-CreERT2; R26mTmG transgenic mouse model of acute kidney injury (AKI). Then, we developed an abdominal imaging window (AIW) in the mouse and tracked the Sox9+ cells in the inducible Sox9 Cre transgenic mice via in vivo lineage tracing with two-photon intravital microscopy. Our results demonstrated that EVs can travel to the injured kidneys post intravenous injection as visualized by Gaussia luciferase imaging and markedly increased the activation of Sox9+ cells. Moreover, the two-photon living imaging of lineage-labeled Sox9+ cells showed that the EVs promoted the expansion of Sox9+ cells in kidneys post AKI. Histological staining results confirmed that the descendants of Sox9+ cells contributed to nephric tubule regeneration which significantly ameliorated the renal function after AKI. In summary, intravital lineage tracing with two-photon microscopy through an embedded AIW provides a practical strategy to investigate the beneficial functions and to clarify the mechanisms of regenerative therapies in AKI.
A sensitive SERS platform for the simultaneous detection of S. aureus and E. coli on the basis of dual recognition by vancomycin and aptamers is reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.