We propose and experimentally demonstrate a novel, to the best of our knowledge, private correlated random bit generation (CRBG) scheme based on commonly driven induced synchronization of two wideband physical entropy sources, which employs an open-loop distributed feedback laser followed by a hybrid electro-optic nonlinear transformation hardware module for effective bandwidth expansion and privacy enhancement. A Mach–Zehnder interferometer followed by an electro-optic self-feedback phase modulation loop as well as a dispersion element are constructed as a private hardware module to perform post-processing and nonlinear transformation of the synchronized signal. A record high rate of 5.2-Gb/s CRBG is successfully achieved between two synchronized wideband physical entropy sources with an enhanced entropy source rate and hardware key space. The demonstrated scheme may provide a new way for CRBG in future high speed secure communication systems.
With the widespread application of big data, the amount of data transmitted through optical networks has been increasing dramatically. Correlated random bit generation (CRBG) is one of the key technologies in secure communication systems to ensure security performance and transmission efficiency. We propose and demonstrate a CRBG scheme based on a Mach–Zehnder modulator (MZM) electro-optic feedback loop to improve the security and speed of communication systems. In this scheme, common-signal-induced synchronization is accomplished to generate wideband complex physical entropy sources, and a private hardware module is employed to perform post-processing and nonlinear transformation of the synchronized signal. The simulation results show that the effective bandwidth of the output chaotic signal is significantly increased to 27.76 GHz, and high-quality synchronization with a correlation coefficient of over 0.98 is reached. A high-rate CRBG of up to 5.3 Gb/s is successfully achieved between two synchronized wideband physical entropy sources, and the hardware key space is enhanced to ∼242, which greatly improves the privacy of physical entropy sources. The proposed scheme provides a promising approach for high-speed private CRBG, which is expected to be used in high-speed secure key distribution and optical communication systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.