Gliomas, primary brain tumors arising from glial cells, can be effectively identified using Magnetic Resonance Imaging (MRI), a widely employed diagnostic tool in clinical settings. Accurate glioma segmentation, which is crucial for diagnosis and surgical intervention, can be achieved by integrating multiple MRI modalities that offer complementary information. However, limited access to multiple modalities in certain clinical contexts often results in suboptimal performance of glioma segmentation methods. This study introduces a novel generalized knowledge distillation framework designed to transfer multimodal knowledge from a teacher model to a unimodal student model via two distinct distillation strategies: segmentation graph distillation and cascade region attention distillation. The former enables the student to replicate the teacher’s softened output, whereas the latter facilitates extraction and learning of region feature information at various levels within the teacher model. Our evaluation of the proposed distillation strategies using the BraTS 2018 dataset confirms their superior performance in unimodal segmentation contexts compared with existing methods.
The multimodal segmentation of medical images is essential for clinical applications as it allows medical professionals to detect anomalies, monitor treatment effectiveness, and make informed therapeutic decisions. However, existing segmentation methods depend on paired images of modalities, which may not always be available in practical scenarios, thereby limiting their applicability. To address this challenge, current approaches aim to align modalities or generate missing modality images without a ground truth, which can introduce irrelevant texture details. In this paper, we propose the energy-basedsemantic augmented segmentation (ESAS) model, which employs the energy of latent semantic features from a supporting modality to enhance the segmentation performance on unpaired query modality data. The proposed ESAS model is a lightweight and efficient framework suitable for most unpaired multimodal image-learning tasks. We demonstrate the effectiveness of our ESAS model on the MM-WHS 2017 challenge dataset, where it significantly improved Dice accuracy for cardiac segmentation on CT volumes. Our results highlight the potential of the proposed ESAS model to enhance patient outcomes in clinical settings by providing a promising approach for unpaired multimodal medical image segmentation tasks.
Medical image segmentation is one of the fundamental problems for artificial intelligencebased clinical decision systems. Current automatic medical image segmentation methods are often failed to meet clinical requirements. As such, a series of interactive segmentation algorithms are proposed to utilize expert correction information. However, existing methods suffer from some segmentation refining failure problems after long-term interactions and some cost problems from expert annotation, which hinder clinical applications. This paper proposes an interactive segmentation framework, called interactive MEdical segmentation with self-adaptive Confidence CAlibration (MECCA), by introducing the corrective action evaluation, which combines the actionbased confidence learning and multi-agent reinforcement learning (MARL). The evaluation is established through a novel action-based confidence network, and the corrective actions are obtained from MARL. Based on the confidential information, a self-adaptive reward function is designed to provide more detailed feedback, and a simulated label generation mechanism is proposed on unsupervised data to reduce over-reliance on labeled data. Experimental results on various medical image datasets have shown the significant performance of the proposed algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.