Summary Ecosystem services have received increasing attention in life sciences, but only a limited amount of quantitative data are available concerning the ability of weeds to provide these services. Following an expert focus group on this topic, a systematic search for articles displaying evidence of weeds providing regulating ecosystem services was performed, resulting in 129 articles. The most common service found was pest control and the prevailing mechanism was that weeds provide a suitable habitat for natural enemies. Other articles showed that weeds improved soil nutrient content, soil physical properties and crop pollinator abundance. Weeds were found to provide some important ecosystem services for agriculture, but only a small number of studies presented data on crop yield. Experimental approaches are proposed that can: (i) disentangle the benefits obtained from ecosystem services provisioning from the costs due to weed competition and (ii) quantify the contribution of diverse weed communities in reducing crop competition and in providing ecosystem services. Existing vegetation databases can be used to select weed species with functional traits facilitating ecosystem service provisioning while having a lower competitive capacity. However, for services such as pest control, there are hardly any specific plant traits that have been identified and more fundamental research is needed.
Summary Atmospheric nitrogen (N) deposition and climate warming are two major components of global change that drive species richness and composition in plant communities. However, their combined effects have been insufficiently investigated across large spatial and temporal scales particularly in high‐elevation, nutrient‐limited ecosystems. We examine whether and how N deposition and climate warming have altered the plant richness and the composition of subalpine semi‐natural, extensively grazed grasslands of the Pyrenees, using two complementary approaches: (i) analysis of 553 relevés to explore vegetation changes across large ecological gradients including temperature and N deposition (spatial approach) and (ii) a re‐sampling of a subset of 40 sites among the 553 sites to assess temporal changes over the past decades (temporal approach). Both approaches showed that the vascular plant species richness increased when temperature and cumulative N deposition increase, shifting the species composition towards more thermophilic and eutrophic communities. Synthesis. We hypothesize that the release from abiotic constraints (milder temperature and higher nitrogen availability) due to global changes and long‐standing extensive grazing counteracting the negative effects of nitrogen deposition have been responsible for the diversity and compositional changes of plant communities over the last decades in the Pyrenees. Thus, in contrast with other grasslands, high‐elevation grazed grasslands may increase in species diversity with nitrogen deposition under climate warming.
Background Field margins are ecologically important to an agroecosystem as they are a source of biodiversity. They can be composed of a diverse flora which may offer resources to a wide range of insects and birds. The vegetation composition of field margins is determined by soil characteristics, management, and landscape structures. However, little is known about the effect of individual field margin components such as ditches, grass strips, shrubs and trees, and the overall margin’s complexity, on the vegetation composition and its functional effect and response traits. Methods This paper reports on the effects of field margin component typology (ditches, grass strips, shrubs, trees, and vehicle tracks) and complexity (the number of components), on the herbaceous vegetation of field margins. Forty field margins were sampled in 2016 in a 200 ha. organic mixed arable livestock farm. Results The factor which was identified as having the most effect on vegetation composition was adjacent land-use type, which reflected the margins’ management regime. However, field margin components were found to affect vegetation response and effect traits. Tree components had less grassweeds than vehicle tracks while more complex field margins also had less grassweeds than simple field margins near cropped fields, most likely due to the lower availability in light and less disturbance from vehicles. Simple grassy margins produced a high proportion of hymenoptera flowers. Discussion These results highlight the importance of field margin components in maintaining a high diversity of vegetation typologies differing in effect traits that are relevant for the provisioning of ecosystem services, such as supporting pollen and nectar requirements of beneficial insects, as well as their importance in determining the presence of weed species that could potentially invade the cropped fields.
Field margins have an important ecological role in agroecosystems including hosting beneficial insect such as syrphids. However, little is known of syrphid preferences for different types of field margins. Syrphids were sampled in field margins in an organic agroecosystem to test the hypothesis that syrphid abundance in field margins depends not only on the floral resource abundance but also on field margin component type, field margin complexity, and adjacent land-use type. Floral resource abundance had the greatest influence on the number of syrphids surveyed. Field margin characteristics were deemed to effect syrphid abundance both independently of their effect on floral resources and by altering floral resource abundance. Syrphids were more abundant in field margins adjacent to cropped fields than those adjacent to grazed fields or roads. More syrphids were found in ditch components than in tree or grass strip components. The influence of floral resources on syrphid abundance varied depending on their botanical families, although no significant differences were observed for the effect of botanical family floral resource index on syrphid abundance. These findings demonstrate that field margin characteristics play an important role in facilitating plant–syrphid interactions and offer an insight in agroecosystem management for the promotion of beneficial insects. The influence of field margin characteristics on other beneficial insect groups should also be investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.