The prevalence and incidence of Parkinson’s disease (PD), an age-related neurodegenerative disease, are higher among elderly people. Independent of etiology, dysfunction and loss of dopaminergic neurons are common pathophysiological changes in PD patients with impaired motor and non-motor function. Currently, preventive or therapeutic treatment for combating PD is limited. The ghrelin axis and ghrelin receptor have been implicated in the preservation of dopaminergic neurons and have potential implications in PD treatment. Teaghrelin, a compound originating from Chin-Shin Oolong tea, exhibits ghrelin agonist activity. In this study, the neuroprotective potential of teaghrelin against PD was explored in a cell model in which human neuroblastoma SH-SY5Y cells were treated with the mitochondrial toxin 1-methyl-4-phenylpyridinium (MPP+). Upon MPP+ exposure, SH-SY5Y cells exhibited decreased mitochondrial complex I activity and apoptotic cell death. Teaghrelin activated AMP-activated protein kinase (AMPK)/sirtuin 1(SIRT1)/peroxisome proliferator-activated receptor gamma (PPARγ) coactivator-1α (PGC-1α) and extracellular signal–regulated kinases 1 and 2 (ERK1/2) pathways to antagonize MPP+-induced cell death. Herein, we propose that teaghrelin is a potential candidate for the therapeutic treatment of PD.
Caffeine has been reported to induce anti-tumor immunity for attenuating breast cancer by blocking the adenosine 2A receptor. Molecular modeling showed that theacrine, a purine alkaloid structurally similar to caffeine, might be an antagonist of the adenosine 2A receptor equivalent to or more effective than caffeine. Theacrine was further demonstrated to be an effective antagonist of the adenosine 2A receptor as its concurrent supplementation significantly reduced the elevation of AMPK phosphorylation level in MCF-7 human breast cells induced by CGS21680, an agonist of adenosine 2A receptors. In an animal model, the development of mammary carcinoma induced by 7,12-Dimethylbenz[a]anthracene in Sprague–Dawley rats could be attenuated by daily supplement of theacrine of 50 or 100 mg/kg body weight. Both expression levels of cleaved-caspase-3/pro-caspase-3 and granzyme B in tumor tissues were significantly elevated when theacrine was supplemented, indicating the induction of programmed cell death in tumor cells might be involved in the attenuation of mammary carcinoma. Similar to the caffeine, significant elevation of interferon-γ and tumor necrosis factor-α was observed in the serum and tumor tissues of rats after the theacrine supplement of 50 mg/kg body weight. Taken together, theacrine is an effective antagonist of adenosine 2A receptors and possesses great potential to be used to attenuate breast cancer.
Magnesium lithospermate B (MLB) is a primary hydrophilic component of Danshen, the dried root of Salvia miltiorrhiza used in traditional medicine, and its beneficial effects on obesity-associated metabolic abnormalities were reported in our previous study. The present study investigated the anti-muscle atrophy potential of MLB in mice with high-fat diet (HFD)-induced obesity. In addition to metabolic abnormalities, the HFD mice had a net loss of skeletal muscle weight and muscle fibers and high levels of muscle-specific ubiquitin E3 ligases, namely the muscle atrophy F-box (MAFbx) and muscle RING finger protein 1 (MuRF-1). MLB supplementation alleviated those health concerns. Parallel changes were revealed in high circulating tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), skeletal TNF receptor I (TNFRI), nuclear factor-kappa light chain enhancer of activated B cells (NF-κB), p65 phosphorylation, and Forkhead box protein O1 (FoxO1) as well as low skeletal phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt) phosphorylation. The study revealed that MLB prevented obesity-associated skeletal muscle atrophy, likely through the inhibition of MAFbx/MuRF-1-mediated muscular degradation. The activation of the PI3K-Akt-FoxO1 pathway and inhibition of the TNF-α/TNFRI/NF-κB pathway were assumed to be beneficial effects of MLB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.