[1] We examine the poleward transport of water vapor across 70 ı N during boreal winter in the ERA-Interim reanalysis product, focusing on intense moisture intrusion events. We analyze the large-scale circulation patterns associated with these intrusions and the impacts they have at the surface. A total of 298 events are identified between 1990 and 2010, an average of 14 per season, accounting for 28% of the total poleward transport of moisture across 70 ı N. They are concentrated over the main ocean basins at that latitude in the Labrador Sea, North Atlantic, Barents/Kara Sea, and Pacific. Composites of sea level pressure and potential temperature on the 2 potential vorticity unit surface during intrusions show a large-scale blocking pattern to the east of each basin, deflecting midlatitude cyclones and their associated moisture poleward. The interannual variability of intrusions is strongly correlated with variability in winter-mean surface downward longwave radiation and skin temperature averaged over the Arctic. Citation: Woods, C., R. Caballero, and G. Svensson (2013), Large-scale circulation associated with moisture intrusions into the Arctic during winter, Geophys. Res. Lett., 40,[4717][4718][4719][4720][4721]
This paper examines the trajectories followed by intense intrusions of moist air into the Arctic polar region during autumn and winter and their impact on local temperature and sea ice concentration. It is found that the vertical structure of the warming associated with moist intrusions is bottom amplified, corresponding to a transition of local conditions from a “cold clear” state with a strong inversion to a “warm opaque” state with a weaker inversion. In the marginal sea ice zone of the Barents Sea, the passage of an intrusion also causes a retreat of the ice margin, which persists for many days after the intrusion has passed. The authors find that there is a positive trend in the number of intrusion events crossing 70°N during December and January that can explain roughly 45% of the surface air temperature and 30% of the sea ice concentration trends observed in the Barents Sea during the past two decades.
This paper quantifies the impacts of approximations and assumptions in the parameterization of bulk formulas on the exchange of momentum, heat, and freshwater computed between the ocean and atmosphere. An ensemble of sensitivity experiments is examined. Climatologies of wind stress, turbulent heat flux, and evaporation for the period 1982–2014 are computed using SST and surface meteorological state variables from ERA-Interim. Each experiment differs from the defined control experiment in only one aspect of the parameterization of the bulk formulas. The wind stress is most sensitive to the closure used to relate the neutral drag coefficient to the wind speed in the bulk algorithm, which mainly involves the value of the Charnock parameter. The disagreement between the state-of-the-art algorithms examined is typically on the order of 10%. The largest uncertainties in turbulent heat flux and evaporation are also related to the choice of the algorithm (typically 15%) but also emerge in experiments examining approximations related to the surface temperature and saturation humidity. Thus, approximations for the skin temperature and the salt-related reduction of saturation humidity have a substantial impact on the heat flux and evaporation (typically 10%). Approximations such as the use of a fixed air density, sea level pressure, or simplified formula for the saturation humidity lead to errors no larger than 4% when tested individually. The impacts of these approximations combine linearly when implemented together, yielding errors up to 20% over mid- and subpolar latitudes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.