This is the first documented outbreak of cfr-mediated linezolid-resistant S. epidermidis in the Republic of Ireland. Despite this, and due to existing outbreak management protocols, the responsible micro-organism and source were identified efficiently. However, it became apparent that staff knowledge of antimicrobial susceptibilities and appropriate hygiene practices were suboptimal at the time of the outbreak, and that educational interventions (and re-inforcement) are necessary to avoid occurrence of antimicrobial resistance and outbreaks such as reported here.
Cre/LoxP technology has revolutionized genetic studies and allowed for spatial and temporal control of gene expression in specific cell types. The field of microglial biology has particularly benefited from this technology as microglia have historically been difficult to transduce with virus or electroporation methods for gene delivery. Here, we interrogate four of the most widely available microglial inducible Cre lines. We demonstrate varying degrees of recombination efficiency and spontaneous recombination, depending on the Cre line and loxP distance. We also establish best practice guidelines and protocols to measure recombination efficiency in microglia, which could be extended to other cell types. There is increasing evidence that microglia are key regulators of neural circuit structure and function. Microglia are also major drivers of a broad range of neurological diseases. Thus, reliable manipulation of their function in vivo is of utmost importance. Identifying caveats and benefits of all tools and implementing the most rigorous protocols are crucial to the growth of the field of microglial biology and the development of microglia-based therapeutics.
Background
Escherichia coli (E. coli) comprise part of the normal vaginal microflora. Transfer from mother to neonate can occur during delivery resulting, sometimes, in neonatal bacterial disease. Here, we aim to report the first outbreak of CTX-M ESBL-producing E. coli with evidence of mother-to-neonate transmission in an Irish neonatal intensive care unit (NICU) followed by patient-to-patient transmission.MethodsInvestigation including molecular typing was conducted. Infection was defined by clinical and laboratory criteria and requirement for antimicrobial therapy with or without positive blood cultures. Colonisation was determined by isolation without relevant symptoms or indicators of infection.ResultsIndex case was an 8-day-old baby born at 34 weeks gestation who developed ESBL-producing E. coli infections at multiple body sites. Screening confirmed their mother as colonised with ESBL-producing E. coli. Five other neonates, in the NICU simultaneously with the index case, also tested positive. Of these, four were colonised while one neonate developed sepsis, requiring antimicrobial therapy. The second infected neonate’s mother was also colonised by ESBL-producing E. coli. Isolates from all eight positive patients (6 neonates, 2 mothers) were compared using pulsed-field gel electrophoresis (PFGE). Two distinct ESBL-producing strains were implicated, with evidence of transmission between mothers and neonates for both strains. All isolates were confirmed as CTX-M ESBL-producers. There were no deaths associated with the outbreak.ConclusionsResources were directed towards control interventions focused on hand hygiene and antimicrobial stewardship, which ultimately proved successful. Since this incident, all neonates admitted to the NICU have been screened for ESBL-producers and expectant mothers are screened at their first antenatal appointment. To date, there have been no further outbreaks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.