The purpose of the present study was to compare the effects of cold water immersion (CWI) and active recovery (ACT) on resting limb blood flow, rectal temperature and repeated cycling performance in the heat. Ten subjects completed two testing sessions separated by 1 week; each trial consisted of an initial all-out 35-min exercise bout, one of two 15-min recovery interventions (randomised: CWI or ACT), followed by a 40-min passive recovery period before repeating the 35-min exercise bout. Performance was measured as the change in total work completed during the exercise bouts. Resting limb blood flow, heart rate, rectal temperature and blood lactate were recorded throughout the testing sessions. There was a significant decline in performance after ACT (mean (SD) -1.81% (1.05%)) compared with CWI where performance remained unchanged (0.10% (0.71%)). Rectal temperature was reduced after CWI (36.8°C (1.0°C)) compared with ACT (38.3°C (0.4°C)), as was blood flow to the arms (CWI 3.64 (1.47) ml/100 ml/min; ACT 16.85 (3.57) ml/100 ml/min) and legs (CW 4.83 (2.49) ml/100 ml/min; ACT 4.83 (2.49) ml/100 ml/min). Leg blood flow at the end of the second exercise bout was not different between the active (15.25 (4.33) ml/100 ml/min) and cold trials (14.99 (4.96) ml/100 ml/min), whereas rectal temperature (CWI 38.1°C (0.3°C); ACT 38.8°C (0.2°C)) and arm blood flow (CWI 20.55 (3.78) ml/100 ml/min; ACT 23.83 (5.32) ml/100 ml/min) remained depressed until the end of the cold trial. These findings indicate that CWI is an effective intervention for maintaining repeat cycling performance in the heat and this performance benefit is associated with alterations in core temperature and limb blood flow.
(2013). The effects of aerobic exercise training at two different intensities in obesity and type 2 diabetes: implications for oxidative stress, low-grade inflammation and nitric oxide production. European Journal of Applied Physiology, 114 (2), 251-260.
Copyright and re-use policy
Exercise is an effective treatment for type 2 diabetes mellitus, resulting in stabilization of plasma glucose in the acute phase and improvements in body composition, insulin resistance and glycosylated haemoglobin with chronic exercise training. However, the most appropriate exercise prescription for type 2 diabetes has not yet been established, resulting from insufficient evidence to determine the optimum type, intensity, duration or frequency of exercise training. Furthermore, patient engagement in exercise is suboptimal. There are many likely reasons for low engagement in exercise; one possible contributory factor may be a tendency for expert bodies to prioritize the roles of diet and medication over exercise in their treatment guidelines. Published treatment guidelines vary in their approach to exercise training, but most agencies suggest that people with type 2 diabetes engage in 150 min of moderate to vigorous aerobic exercise per week. This prescription is similar to the established guidelines for cardiovascular health in the general population. Future possibilities in this area include investigation of the physiological effects and practical benefits of exercise training of different intensities in type 2 diabetes, and the use of individualized prescription to maximize the health benefits of training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.