Background Recent studies have suggested alternative cerebrospinal fluid (CSF) clearance pathways for brain parenchymal metabolic waste products. One fundamental but relatively under-explored component of these pathways is the anatomic region surrounding the superior sagittal sinus, which has been shown to have relevance to trans-arachnoid molecular passage. This so-called parasagittal dural (PSD) space may play a physiologically significant role as a distal intracranial component of the human glymphatic circuit, yet fundamental gaps persist in our knowledge of how this space changes with normal aging and intracranial bulk fluid transport. Methods We re-parameterized MRI methods to assess CSF circulation in humans using high resolution imaging of the PSD space and phase contrast measures of flow through the cerebral aqueduct to test the hypotheses that volumetric measures of PSD space (1) are directly related to CSF flow (mL/s) through the cerebral aqueduct, and (2) increase with age. Multi-modal 3-Tesla MRI was applied in healthy participants (n = 62; age range = 20–83 years) across the adult lifespan whereby phase contrast assessments of CSF flow through the aqueduct were paired with non-contrasted T1-weighted and T2-weighted MRI for PSD volumetry. PSD volume was extracted using a recently validated neural networks algorithm. Non-parametric regression models were applied to evaluate how PSD volume related to tissue volume and age cross-sectionally, and separately how PSD volume related to CSF flow (significance criteria: two-sided p < 0.05). Results A significant PSD volume enlargement in relation to normal aging (p < 0.001, Spearman’s-$$\rho$$ ρ = 0.6), CSF volume (p < 0.001, Spearman’s-$$\rho$$ ρ = 0.6) and maximum CSF flow through the aqueduct of Sylvius (anterograde and retrograde, p < 0.001) were observed. The elevation in PSD volume was not significantly related to gray or white matter tissue volumes. Findings are consistent with PSD volume increasing with age and bulk CSF flow. Conclusions Findings highlight the feasibility of quantifying PSD volume non-invasively in vivo in humans using machine learning and non-contrast MRI. Additionally, findings demonstrate that PSD volume increases with age and relates to CSF volume and bi-directional flow. Values reported should provide useful normative ranges for how PSD volume adjusts with age, which will serve as a necessary pre-requisite for comparisons to persons with neurodegenerative disorders.
Introduction List learning tasks are powerful clinical tools for studying memory, yet have been relatively underutilized within the functional imaging literature. This limits understanding of regions such as the Papez circuit which support memory performance in healthy, non-demented adults. Method The current study characterized list learning performance in 40 adults who completed a Semantic List Learning Task (SLLT) with a Brown-Peterson manipulation during functional MRI (fMRI). Cued recall with semantic cues, and recognition memory were assessed after imaging. Internal reliability and convergent and discriminant validity were evaluated. Results Subjects averaged 38% accuracy in recall (62% for recognition), with primacy but no recency effects observed. Validity and reliability were demonstrated by showing that the SLLT was correlated with the California Verbal Learning test (CVLT), but not with executive functioning tests, and high intraclass correlation coefficient across lists for recall (.91). fMRI measurements during Encoding (vs. Silent Rehearsal) revealed significant activation in bilateral hippocampus, parahippocampus, and bilateral anterior and posterior cingulate cortex. Post-hoc analyses showed increased activation in anterior and middle hippocampus, subgenual cingulate, and mammillary bodies specific to Encoding. In addition, increasing age was positively associated with increased activation in a diffuse network, particularly frontal cortex and specific Papez regions for correctly recalled words. Gender differences were specific to left inferior and superior frontal cortex. Conclusions This is a clinically relevant list learning task that can be used in studies of groups for which the Papez circuit is damaged or disrupted, in mixed or crossover studies at imaging and clinical sites.
Questions have been raised about whether poor performance on memory tasks by individuals with major depressive disorder (MDD) might be the result of poor or variable effort or disease-related disruption of neural circuits supporting memory functions. The present study examined performance on a measure of task engagement and on an auditory memory task among 45 patients with MDD (M age = 47.82, SD = 19.55) relative to 32 healthy controls (HC; M age = 51.03, SD = 22.09). One-hundred percent of HC and MDD volunteers performed above the threshold for adequate effort on a formal measure of task engagement. The MDD subjects performed significantly more poorly than the HC subjects on an auditory learning and memory test. The present results suggest that auditory memory difficulties do occur among those with MDD and that decrements in performance in this group may be related to factors other than lack of effort.
Objective Individuals with Major Depressive Disorder (MDD) demonstrate poorer learning and memory skills relative to never-depressed comparisons (NDC). Previous studies report decreased volume and disrupted function of frontal lobes and hippocampi in MDD during memory challenge. However, it has been difficult to dissociate contributions of short-term memory and executive functioning to memory difficulties from those that might be attributable to long-term memory deficits. Method Adult males (MDD, n=19; NDC, n=22) and females (MDD, n=23; NDC, n=19) performed the Semantic List Learning Task (SLLT) during fMRI. The SLLT Encoding condition consists of 15 lists, each containing 14 words. After each list, a Distractor condition occurs, followed by cued Silent Rehearsal instructions. Post-scan recall and recognition were collected. Groups were compared using block (Encoding-Silent Rehearsal) and event-related (Words Recalled) models. Results MDD displayed lower recall relative to NDC. NDC displayed greater activation in several temporal, frontal, and parietal regions, for both Encoding-Silent Rehearsal and the Words Recalled analyses. Groups also differed in activation patterns in regions of the Papez circuit in planned analyses. The majority of activation differences were not related to performance, presence of medications, presence of comorbid anxiety disorder, or decreased gray matter volume in MDD. Conclusions Adults with MDD exhibit memory difficulties during a task designed to reduce the contribution of individual variability from short-term memory and executive functioning processes, parallel with decreased activation in memory and executive functioning circuits. Ecologically valid long-term memory tasks are imperative for uncovering neural correlates of memory performance deficits in adults with MDD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.