We demonstrate that tuberculosis lesions in C3HeB/FeJ are hypoxic. Activities of some key tuberculosis drug regimens in development are represented differently in C3HeB/FeJ versus BALB/c mice. Because C3HeB/FeJ display key features of human tuberculosis, this strain warrants evaluation as a more pathologically relevant model for preclinical studies.
The potential additive activity of simvastatin to first-line TB treatment holds promise. However, further studies to identify the optimal statin and dosing are required. In addition the ability of combination treatment with statins to accelerate the time required to achieve a stable cure remains to be explored.
Pertussis, caused by respiratory tract infection with the bacterial pathogen Bordetella pertussis, has long been considered to be a toxin-mediated disease. Bacteria adhere and multiply extracellularly in the airways and release several toxins, which have a variety of effects on the host, both local and systemic. Predominant among these toxins is pertussis toxin (PT), a multi-subunit protein toxin that inhibits signaling through a subset of G protein-coupled receptors in mammalian cells. PT activity has been linked with severe and lethal pertussis disease in young infants and a detoxified version of PT is a common component of all licensed acellular pertussis vaccines. The role of PT in typical pertussis disease in other individuals is less clear, but significant evidence supporting its contribution to pathogenesis has been accumulated from animal model studies. In this review we discuss the evidence indicating a role for PT in pertussis disease, focusing on its contribution to severe pertussis in infants, modulation of immune and inflammatory responses to infection, and the characteristic paroxysmal cough of pertussis.
In infants, can cause severe disease, manifested as pronounced leukocytosis, pulmonary hypertension, and even death. The exact cause of death remains unknown, and no effective therapies for treating fulminant pertussis exist. In this study, a neonatal mouse model of critical pertussis is characterized, and a central role for pertussis toxin (PT) is described. PT promoted colonization, leukocytosis, T cell phenotypic changes, systemic pathology, and death in neonatal but not adult mice. Surprisingly, PT inhibited lung inflammatory pathology in neonates, a result which contrasts dramatically with observed PT-promoted pathology in adult mice. Infection with a PT-deficient strain induced severe pulmonary inflammation but not mortality in neonatal mice, suggesting that death in these mice was not associated with impaired lung function. Dissemination of infection beyond the lungs was also detected in neonatal mice, which may contribute to the observed systemic effects of PT. We propose that it is the systemic activity of pertussis toxin and not pulmonary pathology that promotes mortality in critical pertussis. In addition, we observed transmission of infection between neonatal mice, the first report of transmission in mice. This model will be a valuable tool to investigate causes of pertussis pathogenesis and identify potential therapies for critical pertussis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.