Phylogenies are a central and indispensable tool for evolutionary and ecological research. Even though most angiosperm families are well investigated from a phylogenetic point of view, there are far less possibilities to carry out large-scale meta-analyses at order level or higher. Here, we reconstructed a large-scale dated phylogeny including nearly 1/8th of all angiosperm species, based on two plastid barcoding genes, matK (incl. trnK) and rbcL. Novel sequences were generated for several species, while the rest of the data were mined from GenBank. The resulting tree was dated using 56 angiosperm fossils as calibration points. The resulting megaphylogeny is one of the largest dated phylogenetic tree of angiosperms yet, consisting of 36,101 sampled species, representing 8,399 genera, 426 families and all orders. This novel framework will be useful for investigating different broad scale research questions in ecological and evolutionary biology.
Identifying areas of high biodiversity is an established way to prioritize areas for conservation [1-3], but global approaches have been criticized for failing to render global biodiversity value at a scale suitable for local management [4-6]. We assembled 3.1 million species distribution records for 40,401 vascular plant species of tropical Africa from sources including plot data, herbarium databases, checklists, and the Global Biodiversity Information Facility (GBIF) and cleaned the records for geographic accuracy and taxonomic consistency. We summarized the global ranges of tropical African plant species into four weighted categories of global rarity called Stars. We applied the Star weights to summaries of species distribution data at fine resolutions to map the bioquality (range-restricted global endemism) of areas [7]. We generated confidence intervals around bioquality scores to account for the remaining uncertainty in the species inventory. We confirm the broad significance of the Horn of Africa, Guinean forests, coastal forests of East Africa, and Afromontane regions for plant biodiversity but also reveal the variation in bioquality within these broad regions and others, particularly at local scales. Our framework offers practitioners a quantitative, scalable, and replicable approach for measuring the irreplaceability of particular local areas for global biodiversity conservation and comparing those areas within their global and regional context.
We review the Rapid Botanic Survey method (RBS), in the context of botanical recording to date. The concept of bioquality, a biodiversity value respecting global rarity, is summarised. Bioquality assessment involves the Star system for categorising species by global rarity; and a Genetic Heat Index (GHI) which aggregates Stars into community scores. All vascular plant species in tropical Africa have Stars, and >3.1 million botanical records have been databased across the continent (Marshall et al., 2016). Presented here are updated bioquality scores from continental tropical Africa, and especially coastal East Africa, and calculated for sample units of various shapes and sizes: East African Flora regions, one degree squares, forest reserves, to fine scale (sample-level) hotspots along the East African coast. GHI is globally standardised and has been calculated for survey data outside Africa, though seldom in tropical Asia. RBS data can also be used to distinguish vegetation types and can include ethnobotanical data. It is recommended as a way to standardise biodiversity or environmental Impact assessment nationally and globally, and for integrating such survey results in databases that will be increasingly useful as the tension between conservation and deforestation increases, and the climate changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.