The sequencing of the zebrafish genome, the emergence of powerful gene-editing tools, and the development of
in vivo
imaging techniques have propelled the economical zebrafish into prominence as a biomedical research model. Neurodegenerative disorders with a cholinergic component, such as Alzheimer’s and Parkinson’s diseases, are currently modeled using zebrafish. Still, the utility of zebrafish as a research model will not be fully realized until their neurophysiological properties are thoroughly characterized. In mammals, the coupling of cholinergic receptors to the phosphorylation of glycogen synthase kinase-3 β (GSK3β) and extracellular signal-regulated kinase 1/2 (ERK1/2) is of critical importance to cognitive processes and imparts protection against neuropathogenic events. Similarly, it is known that cholinergic receptors are required for learning and memory in zebrafish and that
in vivo
activation of cholinergic receptors induces transient changes in evoked synaptic transmission in the telencephalon. However, the intracellular events mediating cholinergic processes in zebrafish have yet to be elucidated. In the current study, an
ex vivo
drug treatment assay was used to demonstrate that carbachol (CCh)-mediated cholinergic stimulation of the intact adult zebrafish brain induces phosphorylation of GSK3β and ERK1/2 in the zebrafish telencephalon. These findings suggest GSK3β and ERK1/2 may underly cognitive processes in zebrafish.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.