RESUMOO preparo do solo, o tráfego de máquinas e o pisoteio animal em condições de umidade inadequada (consistência do solo no estado plástico) são alguns fatores que provocam deformações plásticas e não recuperáveis. Os objetivos deste trabalho foram determinar e avaliar as propriedades físicas e mecânicas do solo para caracterizar o estado de compactação e a capacidade de suporte de carga em três áreas com diferentes usos (pastejo rotacionado, mata nativa e preparo convencional). Foram coletadas amostras com estrutura preservada nas camadas de: 0,00-0,05; 0,05-0,10; e 0,10-0,15 m de um Latossolo Vermelho distrófico. O uso do solo provocou alterações nos valores de densidade do solo (de 0,84 Mg m -3 , na mata nativa, a 1,48 Mg m -3 , no pastejo rotacionado), pressão de pré-consolidação (de 16,5 kPa, no preparo convencional, a 79,4 kPa, no pastejo rotacionado), índice de compressão (de 0,14, no pastejo rotacionado, a 0,77, na mata nativa), resistência à penetração (de 0,45 MPa, no preparo convencional, a 2,56 MPa, no pastejo rotacionado) e macroporosidade (de 0,35 m 3 m -3 , na mata nativa, a 0,03 m 3 m -3 , no pastejo rotacionado). O pisoteio animal intensivo em área de pastagem causou alterações na estrutura do solo, gerando níveis de compactação restritivos às plantas. As áreas de mata nativa e preparo convencional são as mais suscetíveis à compactação do solo, apresentando elevado índice de compressão e baixa pressão de pré-consolidação e densidade do solo.Termos de indexação: pastagem rotacionada, resistência à penetração, densidade do solo, pressão de pré-consolidação.(1) Recebido para publicação em 3 de junho de 2013 e aprovado em 1º de novembro de 2013.
estimation of soil load-bearing capacity from mathematical models that relate preconsolidation pressure (σp) to mechanical resistance to penetration (PR) and gravimetric soil water content (U) is important for defining strategies to prevent compaction of agricultural soils. Our objective was therefore to model the σp and compression index (CI) according to the PR (with an impact penetrometer in the field and a static penetrometer inserted at a constant rate in the laboratory) and U in a Rhodic Eutrudox. The experiment consisted of six treatments: no-tillage system (NT); NT with chiseling; and NT with additional compaction by combine traffic (passing 4, 8, 10, and 20 times). Soil bulk density, total porosity, PR (in field and laboratory measurements), U, σp, and CI values were determined in the 5.5-10.5 cm and 13.5-18.5 cm layers. Preconsolidation pressure (σp) and CI were modeled according to PR in different U. The σp increased and the CI decreased linearly with increases in the PR values. The correlations between σp and PR and PR and CI are influenced by U. From these correlations, the soil load-bearing capacity and compaction susceptibility can be estimated by pr readings evaluated in different u.
The lowland soils are characterized by high susceptibility to water saturation. This anaerobic condition is usually reported in paddy fields and alters the decomposition process of soil organic compounds. The aim of this study was to evaluate the soil microbial and enzymatic activity of a lowland soil at different soil moisture contents. A poorly drained Albaqualf cultivated with irrigated rice was used to evaluate microbial and enzymatic activity in treatments with different levels of soil moisture, being: i) 60% of field capacity (FC) (60%FC); ii) 100% of FC (100%FC); iii) flooded soil with a 2 cm water layer above soil surface, and iv) soil kept at 60%FC with late flood after 29 days the incubation. The greater soil microbial activity was observed in the 100%FC treatment, being 41% greater than 60%FC treatment and only 2% higher than flooded treatment. The enzymatic activity data by fluorescein diacetate (FDA) hydrolysis corroborated the higher CO2 release in treatments with higher soil moisture content. Differently from the results reported, the main methodologies to evaluate microbial activity still recommend maintenance of the soil with a moisture content close to 60% of the FC. However, in lowland soil with history of frequent paddy fields, the maintenance of moisture close to 60% of the FC can limit the microbial activity. The soil respiration technique can be used to evaluate the microbial activity in flooded soil conditions. However, further studies should be conducted to understand the effect of the cultivation history on the microbial community of these environments.
With the intensification of pig farming systems, in Brazil, the production of swine waste has increased considerably, leading to water and soil contamination, due to its improper release. Pig slurry composting is an alternative that can be used in order to avoid or reduce negative impacts, especially for producers with physically limited farm areas, or those who intend to increase the number of animals in their production units. This study aimed at evaluating the influence of pig slurry compost doses on the agronomic characteristics and grain yield of proso millet. A randomized blocks design experiment was installed with four replications and five treatments: control without fertilization, control with mineral fertilizer (NPK) and pig slurry compost doses (4.0 Mg ha-1, 8.0 Mg ha-1; 12.0 Mg ha-1). The pig slurry composting increased the dry matter yield, number of grains per plant and grain yield of proso millet, when compared to the control with or without mineral fertilizer. The proso millet yield, at the doses of 8.0 Mg ha-1 and 12.0 Mg ha-1 of pig slurry, was superior than for both the control without fertilization and the control with the recommended mineral fertilizer, with the latter reaching a maximum agronomic efficiency at the dose of 8.0 Mg ha-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.