Ethylene is well known as a plant hormone, but its role in bacteria is poorly studied.We recently showed that Synechocystis sp. Strain PCC 6803 has a functional receptor for ethylene, ethylene response 1 (Etr1), that is involved in various processes such as phototaxis in response to directional light and biofilm formation. Here, we use RNA sequencing to examine the changes in gene transcripts caused by ethylene under phototaxis conditions. Over 500 gene transcripts across many functional categories, of approximately 3700 protein-encoding genes, were altered by application of ethylene. In general, ethylene caused both up-and downregulation of genes within a functional category. However, the transcript levels of amino acid metabolism genes were mainly upregulated and cell envelope genes were mostly downregulated by ethylene. The changes in cell envelope genes correlate with our prior observation that ethylene affects cell surface properties to alter cell motility. Ethylene caused a twofold or more change in 62 transcripts with the largest category of upregulated genes annotated as transporters and the largest category of downregulated genes annotated as glycosyltransferases which sometimes are involved in changing the composition of sugars on the cell surface. Consistent with changes in cell envelope, glycosyltransferase, and transporter gene transcripts, application of ethylene altered the levels of specific sugar moieties on the surface of cells. Light signaling from Etr1 involves two proteins (Slr1213 and Slr1214) and a small, noncoding RNA, carbon stress-induced RNA1 (csiR1). Application of ethylene caused a rapid, but transient, decrease in the transcript levels of etr1, slr1213, and slr1214 and a rapid and prolonged decrease in csiR1 transcript. Deletion of Slr1214 caused a large increase in csiR1 transcript levels and ethylene lowered csiR1 transcript.These data combined with prior reports indicate that ethylene functions as a signal to affect a variety of processes altering the physiology of Synechocystis cells. K E Y W O R D Sethylene receptor, extracellular polymeric substances, RNA-seq, Synechocystis
Ethylene is a gas that has long been known to act as a plant hormone. We recently showed that a cyanobacterium, Synechocystis sp. PCC 6803 (Synechocystis) contains an ethylene receptor (SynEtr1) that regulates cell surface and extracellular components leading to altered phototaxis and biofilm formation. To determine whether other cyanobacteria respond to ethylene, we examined the effects of exogenous ethylene on phototaxis of the filamentous cyanobacterium, Geitlerinema sp. PCC 7105 (Geitlerinema). A search of the Geitlerinema genome suggests that two genes encode proteins that contain an ethylene binding domain and Geitlerinema cells have previously been shown to bind ethylene. We call these genes GeiEtr1 and GeiEtr2 and show that in air both are expressed. Treatment with ethylene decreases the abundance of GeiEtr1 transcripts. Treatment of Geitlerinema with 1000 nL L –1 ethylene affected the phototaxis response to white light as well as monochromatic red light, but not blue or green light. This is in contrast to Synechocystis where we previously found ethylene affected phototaxis to all three colors. We also demonstrate that application of ethylene down to 8 nL L –1 stimulates phototaxis of both cyanobacteria as well as biofilm formation of Synechocystis. We formerly demonstrated that the transcript levels of slr1214 and CsiR1 in Synechocystis are reduced by treatment with 1000 nL L –1 ethylene. Here we show that application of ethylene down to 1 nL L –1 causes a reduction in CsiR1 abundance. This is below the threshold for most ethylene responses documented in plants. By contrast, slr1214 is unaffected by this low level of ethylene and only shows a reduction in transcript abundance at the highest ethylene level used. Thus, cyanobacteria are very sensitive to ethylene. However, the dose-binding characteristics of ethylene binding to Geitlerinema and Synechocystis cells as well as to the ethylene binding domain of SynEtr1 heterologously expressed in yeast, are similar to what has been reported for plants and exogenously expressed ethylene receptors from plants. These data are consistent with a model where signal amplification is occurring at the level of the receptors.
The effects of ethylene and ethylene signal transduction have been long studied in plants. It was only recently reported that a single-celled cyanobacterium, Synechocystis, contains a functional ethylene receptor. However, it remains to be determined if functional ethylene receptors are more widespread. This review summarizes what is known about responses to ethylene, ethylene receptors, and signal transduction in non-plant species. A summary is provided of information gleaned from searches of sequenced genomes and the possibility that ethylene receptors are widespread in microbes is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.