This study elaborates on the design of artificial pancreas using model predictive control algorithm for a comprehensive physiological model such as the Sorensen model, which regulates the blood glucose and can have a longer control time in normal glycaemic region. The main objective of the proposed algorithm is to eliminate the risk of hyper and hypoglycaemia and have a precise infusion of hormones: insulin and glucagon. A single model predictive controller is developed to control the bihormones, insulin, and glucagon for such a development unmeasured disturbance is considered for a random time. The simulation result for the proposed algorithm performed good regulation lowering the hypoglycaemia risk and maintaining the glucose level within the normal glycaemic range. To validate the performance of the tracking of output and setpoint, average tracking error is used and 4.4 mg/dl results are obtained while compared with standard value (14.3 mg/dl).
The complete automated control and delivery of insulin and glucagon in type 1 diabetes is the developing technology for artificial pancreas. This improves the quality of life of a diabetic patient with the precise infusion. The amount of infusion of these hormones is controlled using a control algorithm, which has the prediction property. The control algorithm model predictive control (MPC) predicts one step ahead and infuses the hormones continuously according to the necessity for the regulation of blood glucose. In this research, the authors propose a MPC control algorithm, which is novel for a dual hormone infusion, for a mathematical model such as Sorenson model, and compare it with the insulin alone or single hormone infusion developed with MPC. Since they aim for complete automatic control and regulation, unmeasured disturbances at a random time are integrated and the performance evaluation is projected through statistical analysis. The blood glucose risk index (BGRI) and control variability grid analysis (CVGA) plot gives the additional evaluation for the comparative results of the two controllers claiming 88% performance by dual hormone evaluated through CVGA plot and 2.05 mg/dl average tracking error, 2.20 BGRI. The MPC developed for dual hormone significantly performs better and the time spent in normal glycaemia is longer while eliminating the risk of hyperglycaemia and hypoglycaemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.