Majorana zero modes (MZMs) emerging at the edges of topological superconducting wires have been proposed as the building blocks of novel, fault-tolerant quantum computation protocols. Coherent detection and manipulation of such states in scalable devices are, therefore, essential in these applications. Recent detection proposals include semiconductor quantum dots (QDs) coupled to the end of these wires, as changes in the QD electronic spectral density due to the MZM coupling could be detected in transport experiments. Here, we propose that multi-QD systems can also be used to manipulate MZMs through precise control over the QDs' parameters. The simplest case where Majorana manipulation is possible is in a double quantum dot (DQD) geometry. By using exact analytical methods and numerical renormalization-group calculations, we show that the QDs' spectral functions can be used to characterize the presence or not of MZMs "leaking" into the DQD. More importantly, we find that these signatures respond to changes in the DQD parameters such as gate-voltages and couplings in a consistent fashion. Additionally, we show that different MZM-DQD coupling geometries ("symmetric" , "in-series" and "T-shaped" junctions) offer distinct ways in which MZMs can be switched from dot to dot. These results highlight the interesting possibilities that DQDs offer for all-electrical MZM control in scalable devices. arXiv:1905.09140v1 [cond-mat.mes-hall]
Silicon spin qubits promise to leverage the extraordinary progress in silicon nanoelectronic device fabrication over the past half century to deliver large-scale quantum processors. Despite the scalability advantage of using silicon technology, realising a quantum computer with the millions of qubits required to run some of the most demanding quantum algorithms poses several outstanding challenges, including how to control many qubits simultaneously. Recently, compact 3D microwave dielectric resonators were proposed as a way to deliver the magnetic fields for spin qubit control across an entire quantum chip using only a single microwave source. Although spin resonance of individual electrons in the globally applied microwave field was demonstrated, the spins were controlled incoherently. Here we report coherent Rabi oscillations of single electron spin qubits in a planar SiMOS quantum dot device using a global magnetic field generated off-chip. The observation of coherent qubit control driven by a dielectric resonator establishes a credible pathway to achieving large-scale control in a spin-based quantum computer.
Silicon spin qubits promise to leverage the extraordinary progress in silicon nanoelectronic device fabrication over the past half century to deliver large-scale quantum processors. Despite the scalability advantage of using silicon technology, constructing a quantum computer with the millions of qubits required to run some of the most demanding quantum algorithms poses several outstanding challenges. Recently, compact 3D microwave dielectric resonators were proposed as a way to deliver the magnetic fields for spin qubit control across an entire quantum chip using only a single microwave source. Although spin resonance of individual electrons in the globally applied microwave field was demonstrated, the spins were controlled incoherently. Here we report coherent Rabi oscillations of single electron spin qubits in a planar SiMOS quantum dot device using a global magnetic field generated off-chip. The observation of coherent qubit control driven by a dielectric resonator establishes a credible pathway to achieving large-scale control in a spin-based quantum computer.
Once called a "classically non-describable two-valuedness" by Pauli [1], the electron spin is a natural resource for long-lived quantum information since it is mostly impervious to electric fluctuations and can be replicated in large arrays using silicon quantum dots, which offer high-fidelity control [2][3][4][5]. Paradoxically, one of the most convenient control strategies is the integration of nanoscale magnets to artificially enhance the coupling between spins and electric field [6-8], which in turn hampers the spin's noise immunity [9] and adds architectural complexity [10]. Here we demonstrate a technique that enables a switchable interaction between spins and orbital motion of electrons in silicon quantum dots, without the presence of a micromagnet. The naturally weak effects of the relativistic spin-orbit interaction in silicon are enhanced by more than three orders of magnitude by controlling the energy quantisation of electrons in the nanostructure, enhancing the orbital motion. Fast electrical control is demonstrated in multiple devices and electronic configurations, highlighting the utility of the technique. Using the electrical drive we achieve coherence time T2,Hahn ≈ 50 µs, fast single-qubit gates with T π/2 = 3 ns and gate fidelities of 99% probed by randomised benchmarking. The higher gate speeds and better compatibility with CMOS manufacturing enabled by on-demand electric control improve the prospects for realising scalable silicon quantum processors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.