The design of an intensity modulated radiotherapy treatment includes the selection of beam angles (geometry problem), the computation of an intensity map for each selected beam angle (intensity problem), and finding a sequence of configurations of a multileaf collimator to deliver the treatment (realization problem). Until the end of the last century research on radiotherapy treatment design has been published almost exclusively in the medical physics literature. However, since then, the attention of researchers in mathematical optimization has been drawn to the area and important progress has been made. In this paper we survey the use of optimization models, methods, and theories in intensity modulated radiotherapy treatment design. This is an updated version of the paper that appeared in 4OR, 6(3), 199-262 (2008).
The design of an intensity modulated radiotherapy treatment includes the selection of beam angles (geometry problem), the computation of an intensity map for each selected beam angle (intensity problem), and finding a sequence of configurations of a multileaf collimator to deliver the treatment (realization problem). Until the end of the last century research on radiotherapy treatment design has been published almost exclusively in the medical physics literature. However, since then, the attention of researchers in mathematical optimization has been drawn to the area and important progress has been made. In this paper we survey the use of optimization models, methods, and theories in intensity modulated radiotherapy treatment design.H.W. Hamacher and Ç.
Given a directed graph G = (N, A) with arc capacities u ij and a minimum cost flow problem defined on G, the capacity inverse minimum cost flow problem is to find a new capacity vector u for the arc set A such that a given feasible flowx is optimal with respect to the modified capacities. Among all capacity vectorsû satisfying this condition, we would like to find one with minimum û − u value.We consider two distance measures for û − u , rectilinear (L 1 ) and Chebyshev (L ∞ ) distances. By reduction from the feedback arc set problem we show that the capacity inverse minimum cost flow problem is N P-hard in the rectilinear case. On the other hand, it is polynomially solvable by a greedy algorithm for the Chebyshev norm. In the latter case we propose a heuristic for the bicriteria problem, where we minimize among all optimal solutions the number of affected arcs. We also present computational results for this heuristic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.