Staining methods routinely used in pathology lead to similar color distributions in the biologically different regions of histopathological images. This causes problems in image segmentation for the quantitative analysis and detection of cancer. To overcome this problem, unlike previous methods that use pixel distributions, we propose a new homogeneity measure based on the distribution of the objects that we define to represent tissue components. Using this measure, we demonstrate a new object-oriented segmentation algorithm. Working with colon biopsy images, we show that this algorithm segments the cancerous and normal regions with 94.89 percent accuracy on the average and significantly improves the segmentation accuracy compared to its pixel-based counterpart.
Gland segmentation is an important step to automate the analysis of biopsies that contain glandular structures. However, this remains a challenging problem as the variation in staining, fixation, and sectioning procedures lead to a considerable amount of artifacts and variances in tissue sections, which may result in huge variances in gland appearances. In this work, we report a new approach for gland segmentation. This approach decomposes the tissue image into a set of primitive objects and segments glands making use of the organizational properties of these objects, which are quantified with the definition of object-graphs. As opposed to the previous literature, the proposed approach employs the object-based information for the gland segmentation problem, instead of using the pixel-based information alone. Working with the images of colon tissues, our experiments demonstrate that the proposed object-graph approach yields high segmentation accuracies for the training and test sets and significantly improves the segmentation performance of its pixel-based counterparts. The experiments also show that the object-based structure of the proposed approach provides more tolerance to artifacts and variances in tissues.
The histopathological examination of tissue specimens is essential for cancer diagnosis and grading. However, this examination is subject to a considerable amount of observer variability as it mainly relies on visual interpretation of pathologists. To alleviate this problem, it is very important to develop computational quantitative tools, for which image segmentation constitutes the core step. In this paper, we introduce an effective and robust algorithm for the segmentation of histopathological tissue images. This algorithm incorporates the background knowledge of the tissue organization into segmentation. For this purpose, it quantifies spatial relations of cytological tissue components by constructing a graph and uses this graph to define new texture features for image segmentation. This new texture definition makes use of the idea of gray-level run-length matrices. However, it considers the runs of cytological components on a graph to form a matrix, instead of considering the runs of pixel intensities. Working with colon tissue images, our experiments demonstrate that the texture features extracted from "graph run-length matrices" lead to high segmentation accuracies, also providing a reasonable number of segmented regions. Compared with four other segmentation algorithms, the results show that the proposed algorithm is more effective in histopathological image segmentation.
Computer-based imaging systems are becoming important tools for quantitative assessment of peripheral blood and bone marrow samples to help experts diagnose blood disorders such as acute leukemia. These systems generally initiate a segmentation stage where white blood cells are separated from the background and other nonsalient objects. As the success of such imaging systems mainly depends on the accuracy of this stage, studies attach great importance for developing accurate segmentation algorithms. Although previous studies give promising results for segmentation of sparsely distributed normal white blood cells, only a few of them focus on segmenting touching and overlapping cell clusters, which is usually the case when leukemic cells are present. In this article, we present a new algorithm for segmentation of both normal and leukemic cells in peripheral blood and bone marrow images. In this algorithm, we propose to model color and shape characteristics of white blood cells by defining two transformations and introduce an efficient use of these transformations in a marker-controlled watershed algorithm. Particularly, these domain specific characteristics are used to identify markers and define the marking function of the watershed algorithm as well as to eliminate false white blood cells in a postprocessing step. Working on 650 white blood cells in peripheral blood and bone marrow images, our experiments reveal that the proposed algorithm improves the segmentation performance compared with its counterparts, leading to high accuracies for both sparsely distributed normal white blood cells and dense leukemic cell clusters. V C 2014 International Society for Advancement of Cytometry
This paper reports a new structural method to mathematically represent and quantify a tissue for the purpose of automated and objective cancer diagnosis and grading. Unlike the previous structural methods, which quantify a tissue considering the spatial distributions of its cell nuclei, the proposed method relies on the use of distributions of multiple tissue components for the representation. To this end, it constructs a graph on multiple tissue components and colors its edges depending on the component types of their endpoints. Subsequently, it extracts a new set of structural features from these color graphs and uses these features in the classification of tissues. Working with the images of colon tissues, our experiments demonstrate that the color-graph approach leads to 82.65% test accuracy and that it significantly improves the performance of its counterparts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.