In this paper we prove Chen inequalities for submanifolds of real space forms endowed with a semi-symmetric metric connection, i.e., relations between the mean curvature associated with the semi-symmetric metric connection, scalar and sectional curvatures, Ricci curvatures and the sectional curvature of the ambient space. The equality cases are considered.
We consider a conformally flat almost pseudo-Ricci symmetric spacetime. At first we show that a conformally flat almost pseudo-Ricci symmetric spacetime can be taken as a model of the perfect fluid spacetime in general relativity and cosmology. Next we show that if in a conformally flat almost pseudo-Ricci symmetric spacetime the matter distribution is perfect fluid whose velocity vector is the vector field corresponding to 1-form B of the spacetime, the energy density and the isotropic pressure are not constants. We also show that a conformally flat almost pseudo-Ricci symmetric spacetime is the Robertson-Walker spacetime. Finally we give an example of a conformally flat almost pseudo-Ricci symmetric spacetime with non-zero non-constant scalar curvature admitting a concircular vector field.
We define a quarter symmetric non-metric connection in an almost rparacontact Riemannian manifold and we consider invariant, non-invariant and antiinvariant hypersurfaces of an almost r-paracontact Riemannian manifold endowed with a quarter symmetric non-metric connection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.