Pure and iodine-doped polyaniline thin films are prepared by ac plasma
polymerization technique. Doping of iodine is carried out in situ as well
as by employing iodine chamber methods. The structural analyses of pure and
iodine-doped polyaniline thin films are carried out by FTIR spectroscopic
studies. Optical bandgaps of these films are evaluated from UV-VIS
absorption studies. Direct and indirect transition energy gaps are
determined from Tauc plots. The structural changes of polyaniline upon
doping and the reduction of optical bandgap are explained on the basis of
the results obtained from FTIR spectroscopic and UV-VIS absorption studies.
Polyaniline thin films were prepared by ac plasma polymerization technique. Capacitance, dielectric loss, dielectric constant and ac conductivity of these films were investigated in the frequency range from 100 Hz to 1 MHz and in the temperature range from 300 to 373 K. Capacitance and dielectric loss decreased with frequency and increased with temperature. This type of behaviour was found to be in good agreement with an existing model. The ac conductivity σ (ω) was found to vary as ω s with the index s 1. Annealing of polyaniline thin films in high vacuum at 373 K for 1 h was found to reduce the dielectric loss. FTIR studies reveal that the aromatic ring is retained in the polyaniline thin films, which enhances the thermal stability of the polymer films.
Polyaniline is chemically synthesised and doped with camphor sulphonic acid. FTIR studies carried out on these samples indicate that the aromatic rings are retained after polymerisation. The percentage of crystallinity for polyaniline doped with camphor sulphonic acid has been estimated from the X-ray diffraction studies and is around 56% with respect to polyaniline emeraldine base. The change in dielectric permittivity with respect to temperature and frequency is explained on the basis of interfacial polarisation. AC conductivity is evaluated from the observed dielectric permittivity. The values of AC and DC conductivity and activation energy are calculated. The activation energy values suggested that the hopping conduction is the prominent conduction mechanism in this system. r
Polyaniline is a widely studied conducting polymer and is a useful material in its bulk and thin film form for many applications, because of its excellent optical and electrical properties. Pristine and iodine doped polyaniline thin films were prepared by a.c. and rf plasma polymerization techniques separately for the comparison of their optical and electrical properties. Doping of iodine was effected in situ. The structural properties of these films were evaluated by FTIR spectroscopy and the optical band gap was estimated from UV-vis-NIR measurements. Comparative studies on the structural, optical and electrical properties of a.c. and rf polymerization are presented here. It has been found that the optical band gap of the polyaniline thin films prepared by rf and a.c. plasma polymerization techniques differ considerably and the band gap is further reduced by in situ doping of iodine. The electrical conductivity measurements on these films show a higher value of electrical conductivity in the case of rf plasma polymerized thin films when compared to the a.c. plasma polymerized films. Also, it is found that the iodine doping enhanced conductivity of the polymer thin films considerably. The results are compared and correlated and have been explained with respect to the different structures adopted under these two preparation techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.