When compared to the wide range of atmospheric sensing techniques, global navigation satellite system (GNSS) offers the advantage of operating under all weather conditions, is continuous, with high temporal and spatial resolution and high accuracy, and has long-term stability. The utilisation of GNSS ground networks of continuous stations for operational weather and climate services is already in place in many nations in Europe, Asia, and America under different initiatives and organisations. In Africa, the situation appears to be different. The focus of this paper is to assess the conditions of the existing and anticipated GNSS reference network in the African region for meteorological applications. The technical issues related to the implementation of near-real-time (NRT) GNSS meteorology are also discussed, including the data and network requirements for meteorological and climate applications. We conclude from this study that the African GNSS network is sparse in the north and central regions of the continent, with a dense network in the south and fairly dense network in the west and east regions of the continent. Most stations lack collocated meteorological sensors and other geodetic observing systems as called for by the GCOS Reference Upper Air Network (GRUAN) GNSS Precipitable Water Task Team and the World Meteorological Organization (WMO). Preliminary results of calculated zenith tropospheric delay (ZTD) from the African GNSS indicate spatial variability and diurnal dependence of ZTD. To improve the density and geometry of the existing network, countries are urged to contribute more stations to the African Geodetic Reference Frame (AFREF) program and a collaborative scheme between different organisations maintaining different GNSS stations on the continent is recommended. The benefit of using spaced based GNSS radio occultation (RO) data for atmospheric sounding is highlighted and filling of geographical gaps from the station-based observation network with GNSS RO is also proposed.
Wheat is an important staple crop in the global food chain. The production of wheat in many regions is constrained by the lack of use of advanced technologies for wheat monitoring. Unmanned Aerial Vehicles (UAVs) is an important platform in remote sensing for providing near real-time farm-scale information. This information aids in making recommendations for monitoring and improving crop management to ensure food security. This study appraised global scientific research trends on wheat and UAV studies between 2005 and 2021, using a bibliometric method. The 398 published documents were mined from Web of Science, Scopus, and Dimensions. Results showed that an annual growth rate of 23.94% indicates an increase of global research based on wheat and UAVs for the surveyed period. The results revealed that China and USA were ranked as the top most productive countries, and thus their dominance in UAVs extensive usage and research developments for wheat monitoring during the study period. Additionally, results showed a low countries research collaboration prevalent trend, with only China and Australia managing multiple country publications. Thus, most of the wheat- and UAV-related studies were based on intra-country publications. Moreover, the results showed top publishing journals, top cited documents, Zipf’s law authors keywords co-occurrence network, thematic evolution, and spatial distribution map with the lack of research outputs from Southern Hemisphere. The findings of also show that “UAV” is fundamental in all keywords with the largest significant appearance in the field. This connotes that UAV efficiency was important for most studies that were monitoring wheat and provided vital information on spatiotemporal changes and variability for crop management. Findings from this study may be useful in policy-making decisions related to the adoption and subsidizing of UAV operations for different crop management strategies designed to enhance crop yield and the direction of future studies.
The lunar laser ranging (LLR) technique is based on the two-way time-of-flight of laser pulses from an earth station to the retroreflectors that are located on the surface of the moon. We discuss the ranging technique and contribution of the timing systems and its significance in light of the new LLR station currently under development by the Hartebeesthoek Radio Astronomy Observatory (HartRAO). Firstly, developing the LLR station at HartRAO is an initiative that will improve the current geometrical network of the LLR stations which are presently concentrated in the northern hemisphere. Secondly, data products derived from the LLR experiments -such as accurate lunar orbit, tests of the general relativity theory, earth-moon dynamics, interior structure of the moon, reference frames, and station position and velocities -are important in better understanding the earth-moon system. We highlight factors affecting the measured range such as the effect of earth tides on station position and delays induced by timing systems, as these must be taken into account during the development of the LLR analysis software. HartRAO is collocated with other fundamental space geodetic techniques which makes it a true fiducial geodetic site in the southern hemisphere and a central point for further development of space-based techniques in Africa. Furthermore, the new LLR will complement the existing techniques by providing new niche areas of research both in Africa and internationally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.