Stirring along isopycnals is a significant factor in determining the distribution of tracers within the ocean. Salinity anomalies on density surfaces from Argo float profiles are used to investigate horizontal stirring and estimate eddy mixing lengths. Eddy mixing length and velocity fluctuations from the ECCO2 global state estimate are used to estimate horizontal diffusivity at a 300 km scale in the upper 2000 m with near‐global coverage. Diffusivity varies by over two orders of magnitude with latitude, longitude, and depth. In all basins, diffusivity is elevated in zonal bands corresponding to strong current regions, including western boundary current extension regions, the Antarctic Circumpolar Current, and equatorial current systems. The estimated mixing lengths and diffusivities provide an observationally based data set that can be used to test and constrain predictions and parameterizations of eddy stirring.
An updated empirical, analytical model for the frequency and wavenumber distribution of balanced motion in the ocean is presented. The spectrum model spans periods longer than the inertial but shorter than a decade and wavelengths between 100 and 10 000 km. Assuming geostrophic dynamics, a spectrum model for the streamfunction is constructed to be consistent with a range of observations, including sea surface height from satellite altimetry, velocity from moored and shipboard instruments, and temperature from moorings. First-order characteristics of the observed spectra, including amplitude and spectral moments, vary slowly geographically. The spectrum model is horizontally anisotropic, accommodating observations that zonal wavenumber–frequency spectra are dominated by a “nondispersive line.” Qualitative and quantitative agreement is found with one-dimensional frequency and wavenumber spectra and observed vertical profiles of variance. Illustrative application is made of the model spectrum to observing-system design, data mapping, and uncertainty estimation for trends.
This study investigates the observed spectral character of eddy heat fluxes near the ocean surface, focusing on the distribution in wavenumber and phase speed space. Eddy heat fluxes in the eastern Pacific are calculated from concurrent satellite sea surface height and sea surface temperature data. A high-resolution coupled climate model is also analyzed in order to verify the physical mechanisms involved and to validate the model against observations. Wavenumber, frequency, and phase speed power spectra and cross spectra are constructed and presented as a function of latitude. These spectra reveal the dominance of coherent mesoscale eddies in both the length scale and phase speed of eddy heat fluxes. The breadths of the spectra are characterized via spectral moments; these moments show that the eddy fluxes are relatively concentrated around the dominant wavenumber and phase speed. Good agreement is found between the model and the observed spectra. The integrated heat transport and corresponding eddy diffusivity are shown to compare well with previous studies, but the results give a deeper insight into what determines the heat flux. Implications for eddy parameterization are discussed.
Satellite altimetry has proven to be one of the most useful oceanographic datasets, providing a continuous, near-global record of surface geostrophic currents, among other uses. One limitation of observations from a single satellite is the difficulty of estimating the full geostrophic velocity field. The 3-yr Jason-1-Ocean Topography Experiment (TOPEX)/Poseidon tandem mission, with two satellites flying parallel tracks, promised to overcome this limitation. However, the wide track separation severely limits the tandem mission's resolution and reduces the observed velocity variance. In this paper, the effective filter imposed by the track separation is discussed and two important consequences for any application of the tandem mission velocities are explained. First, while across-track velocity is simply low-pass filtered, along-track velocity is attenuated also at wavelengths much longer than the track separation. Second, velocity wavenumber spectral slopes are artificially steepened by a factor of k 22 at wavelengths smaller than the track separation. Knowledge of the effective filter has several applications, including reconstruction of the full velocity spectrum from the heavily filtered observations. Here, the hypothesis that the tandem mission flow field is horizontally nondivergent and isotropic is tested. The effective filter is also used to predict the fraction of the eddy kinetic energy (EKE) that is captured for a given track separation. The EKE captured falls off rapidly for track separations greater than about 20 km.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.