The tachykinins comprise a family of closely related peptides that participate in the regulation of diverse biological processes. The tachykinin peptides substance P, neurokinin A, neurokinin A(3-10), neuropeptide K, and neuropeptide gamma are produced from a single preprotachykinin gene as a result of differential RNA splicing and differential posttranslational processing. Another tachykinin, neurokinin B, is produced from a separate preprotachykinin gene. These preprotachykinin mRNAs and peptide products are differentially distributed throughout the nervous system. Three distinct G protein-coupled tachykinin receptors exist for these tachykinin peptides. The three receptors interact differentially with the tachykinin peptides and are uniquely distributed throughout the nervous system. The NK-1 receptor preferentially interacts with substance P, the NK-2 receptor prefers neurokinin A, neuropeptide K, and neuropeptide gamma, and the NK-3 receptor interacts best with neurokinin B. Examples of the roles of tachykinin peptidergic neuronal systems are taken from the spinal cord sensory system and the nigrostriatal extrapyramidal motor system. Analysis of the functional significance of multiple tachykinin peptide systems, receptor-second messenger coupling mechanisms, and developmental and regulatory mechanisms underlying peptide mRNA and receptor expression represent areas of current and future investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.