Neural prostheses translate neural activity from the brain into control signals for guiding prosthetic devices, such as computer cursors and robotic limbs, and thus offer disabled patients greater interaction with the world. However, relatively low performance remains a critical barrier to successful clinical translation; current neural prostheses are considerably slower with less accurate control than the native arm. Here we present a new control algorithm, the recalibrated feedback intention-trained Kalman filter (ReFIT-KF), that incorporates assumptions about the nature of closed loop neural prosthetic control. When tested with rhesus monkeys implanted with motor cortical electrode arrays, the ReFIT-KF algorithm outperforms existing neural prostheses in all measured domains and halves acquisition time. This control algorithm permits sustained uninterrupted use for hours and generalizes to more challenging tasks without retraining. Using this algorithm, we demonstrate repeatable high performance for years after implantation across two monkeys, thereby increasing the clinical viability of neural prostheses.
Neural prosthetic systems seek to improve the lives of severely disabled people by decoding neural activity into useful behavioral commands. These systems and their decoding algorithms are typically developed "offline," using neural activity previously gathered from a healthy animal, and the decoded movement is then compared with the true movement that accompanied the recorded neural activity. However, this offline design and testing may neglect important features of a real prosthesis, most notably the critical role of feedback control, which enables the user to adjust neural activity while using the prosthesis. We hypothesize that understanding and optimally designing high-performance decoders require an experimental platform where humans are in closed-loop with the various candidate decode systems and algorithms. It remains unexplored the extent to which the subject can, for a particular decode system, algorithm, or parameter, engage feedback and other strategies to improve decode performance. Closed-loop testing may suggest different choices than offline analyses. Here we ask if a healthy human subject, using a closed-loop neural prosthesis driven by synthetic neural activity, can inform system design. We use this online prosthesis simulator (OPS) to optimize "online" decode performance based on a key parameter of a current state-of-the-art decode algorithm, the bin width of a Kalman filter. First, we show that offline and online analyses indeed suggest different parameter choices. Previous literature and our offline analyses agree that neural activity should be analyzed in bins of 100- to 300-ms width. OPS analysis, which incorporates feedback control, suggests that much shorter bin widths (25-50 ms) yield higher decode performance. Second, we confirm this surprising finding using a closed-loop rhesus monkey prosthetic system. These findings illustrate the type of discovery made possible by the OPS, and so we hypothesize that this novel testing approach will help in the design of prosthetic systems that will translate well to human patients.
We present benchtop and in vivo experimental results from an integrated circuit designed for wireless implantable neural recording applications. The chip, which was fabricated in a commercially available 0.6-μm 2P3M BiCMOS process, contains 100 amplifiers, a 10-bit analog-to-digital converter (ADC), 100 threshold-based spike detectors, and a 902–928 MHz frequency-shift-keying (FSK) transmitter. Neural signals from a selected amplifier are sampled by the ADC at 15.7 kSps and telemetered over the FSK wireless data link. Power, clock, and command signals are sent to the chip wirelessly over a 2.765-MHz inductive (coil-to-coil) link. The chip is capable of operating with only two off-chip components: a power/command receiving coil and a 100-nF capacitor.
Abstract-HermesD is a high-rate, low-power wireless transmission system to aid research in neural prosthetic systems for motor disabilities and basic motor neuroscience. It is the third generation of our "Hermes systems" aimed at recording and transmitting neural activity from brain-implanted electrode arrays. This system supports the simultaneous transmission of 32 channels of broadband data sampled at 30 ks/s, 12 b/sample, using frequency-shift keying modulation on a carrier frequency adjustable from 3.7 to 4.1 GHz, with a link range extending over 20 m. The channel rate is 24 Mb/s and the bit stream includes synchronization and error detection mechanisms. The power consumption, approximately 142 mW, is low enough to allow the system to operate continuously for 33 h, using two 3.6-V/1200-mAh Libatteries. The transmitter was designed using off-the-shelf components and is assembled in a stack of three 28 mm 28-mm boards that fit in a 38 mm 38 mm 51-mm aluminum enclosure, a significant size reduction over the initial version of HermesD. A 7-dBi circularly polarized patch antenna is used as the transmitter antenna, while on the receiver side, a 13-dBi circular horn antenna is employed. The advantages of using circularly polarized waves are analyzed and confirmed by indoor measurements. The receiver is a stand-alone device composed of several submodules and is interfaced to a computer for data acquisition and processing. It is based on the superheterodyne architecture and includes automatic frequency control that keeps it optimally tuned to the transmitter frequency. The HermesD communications performance is shown through bit-error rate measurements and eye-diagram plots. The sensitivity of the receiver is 83 dBm for a bit-error probability of . Experimental recordings from a rhesus monkey conducting multiple tasks show a signal quality comparable to commercial acquisition systems, both in the low-frequency (local field potentials) and upper-frequency bands (action potentials) of the neural signals. This system can be easily scaled up in terms of the number of channels and data rate to accommodate future generations of Hermes systems.Index Terms-High-rate frequency-shift keying (FSK) transmitter, in-vivo neural recording, neural prosthetics, wireless high-rate multichannel biotelemetry.
Abstract-Neural prosthetic systems have the potential to restore lost functionality to amputees or patients suffering from neurological injury or disease. Current systems have primarily been designed for immobile patients, such as tetraplegics functioning in a rather static, carefully tailored environment. However, an active patient such as amputee in a normal dynamic, everyday environment may be quite different in terms of the neural control of movement. In order to study motor control in a more unconstrained natural setting, we seek to develop an animal model of freely moving humans. Therefore, we have developed and tested HermesC-INI3, a system for recording and wirelessly transmitting neural data from electrode arrays implanted in rhesus macaques who are freely moving. This system is based on the integrated neural interface (INI3) microchip which amplifies, digitizes, and transmits neural data across a wireless channel. The wireless transmission has a range of in free space. All together this device consumes 15.8 mA and 63.2 mW. On a single Index Terms-Brain-machine interface, low power, neural prosthetics, telemetry, wireless.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.