Purpose Many survivors of breast cancer experience an array of chronic symptoms, including pain, insomnia, and fatigue. Few effective therapies have been identified. Behavioral management programs to address similar symptom clusters in other chronic conditions have been effective. The objective of this study was to determine the effect of an Internet-based lifestyle and behavioral self-management program on cancer-related symptoms. Patients and Methods Women with stage 0 to 3 breast cancer who reported insomnia, pain, or fatigue as their primary symptom of concern during the 7 days before enrollment were enrolled. Local therapies and/or chemotherapy were completed at least 3 months before enrollment. Patients were assessed at baseline and after 8 weeks, and they completed the Patient-Reported Outcomes Measurement Information System (PROMIS)–29 Profile and Patient Global Impression of Change (PGIC) questionnaire electronically. Change in each of the eight symptom domains was assessed. Results Fifty patients enrolled. In the 45 patients with both baseline and 8-week PROMIS data, statistically significant improvements in anxiety, sleep, fatigue, activity level, and pain severity were reported. Of the 35 patients who responded to the PGIC, 62.9% reported improvement in their primary symptom. Those who reported fatigue as their primary symptom reported greatest overall benefit in multiple symptom improvement, including improvements in fatigue, anxiety, pain severity, pain interference, and participation in social activities. Conclusions These findings suggest that this lifestyle and behavioral management program may improve multiple symptoms in breast cancer survivors when delivered via the Internet. Randomized studies are warranted to evaluate the efficacy of the online intervention compared with standard symptom management approaches and to identify patients most likely to benefit.
Daytime function decreased after initiation of AI therapy and correlated moderately with increased fatigue, although no association was identified with changes in pain or sleep quality. Additional studies are required to understand why function is reduced, which could have implications for interventions to improve patient tolerance of, and persistence with, AI therapy.
Decompression sickness (DCS) occurs when nitrogen gas (N2) comes out of solution too quickly, forming bubbles in the blood and tissues. These bubbles can be a serious condition; thus it is of extreme interest in the dive community to model DCS risk. Diving models use tissue compartments to calculate tissue partial pressures, often using data obtained from other mammalian species (i.e., pigs). Adipose tissue is an important compartment in these models because N2 is five times more soluble in fat than in blood; at any blood/ tissue interface N2 will diffuse into the fat and can lead to bubble formation on ascent. Little is known about many characteristics of adipose tissue relevant to diving physiology. Therefore, we measured microvessel density and morphology, lipid composition, and N2 solubility in adipose tissue from humans and pigs. Human adipose tissue has significantly higher microvascular density (1.79 Å} 0.04 vs. 1.21 Å} 0.30%), vessel diameter (10.25 Å} 0.28 vs. 6.72 Å} 0.60 μm), total monounsaturated fatty acids (50.1 vs. 41.2 mol%) and N2 solubility (0.061 Å} 0.003 vs. 0.054 Å} 0.004 mL N2 mL-1 oil) compared to pig tissue. Pig adipose tissue has significantly higher lipid content (76.1 Å} 4.9 vs. 64.6 Å} 5.1%) and total saturated fatty acids (38.8 vs. 29.5 mol%). Though two important components in gas kinetics within adipose tissue during diving (blood flow rates and degree of perfusion) are not well understood, our results indicate differences between the adipose tissue of humans and pigs. This suggests data from swine may not exactly predict gas dynamics for estimating DCS in humans.
Objective: Given the high mortality and prolonged duration of mechanical ventilation of COVID-19 patients, we evaluated the safety and efficacy of hyperbaric oxygen for COVID-19 patients with respiratory distress. Methods: This is a single-center clinical trial of COVID-19 patients at NYU Winthrop Hospital from March 31 to April 28, 2020. Patients in this trial received hyperbaric oxygen therapy at 2.0 atmospheres of pressure in monoplace hyperbaric chambers for 90 minutes daily for a maximum of five total treatments. Controls were identified using propensity score matching among COVID-19 patients admitted during the same time period. Using competing-risks survival regression, we analyzed our primary outcome of inpatient mortality and secondary outcome of mechanical ventilation. Results: We treated 20 COVID-19 patients with hyperbaric oxygen. Ages ranged from 30 to 79 years with an oxygen requirement ranging from 2 to 15 liters on hospital days 0 to 14. Of these 20 patients, two (10%) were intubated and died, and none remain hospitalized. Among 60 propensity-matched controls based on age, sex, body mass index, coronary artery disease, troponin, D-dimer, hospital day, and oxygen requirement, 18 (30%) were intubated, 13 (22%) have died, and three (5%) remain hospitalized (with one still requiring mechanical ventilation). Assuming no further deaths among controls, we estimate that the adjusted subdistribution hazard ratios were 0.37 for inpatient mortality (p=0.14) and 0.26 for mechanical ventilation (p=0.046). Conclusions: Though limited by its study design, our results demonstrate the safety of hyperbaric oxygen among COVID-19 patients and strongly suggests the need for a well-designed, multi-center randomized control trial.
Objective: Given the high mortality and prolonged duration of mechanical ventilation of COVID-19 patients, we evaluated the safety and efficacy of hyperbaric oxygen for COVID-19 patients with respiratory distress. Methods: This is a single-center clinical trial of COVID-19 patients at NYU Winthrop Hospital from March 31 to April 28, 2020. Patients in this trial received hyperbaric oxygen therapy at 2.0 atmospheres of pressure in monoplace hyperbaric chambers for 90 minutes daily for a maximum of five total treatments. Controls were identified using propensity score matching among COVID-19 patients admitted during the same time period. Using competing-risks survival regression, we analyzed our primary outcome of inpatient mortality and secondary outcome of mechanical ventilation. Results: We treated 20 COVID-19 patients with hyperbaric oxygen. Ages ranged from 30 to 79 years with an oxygen requirement ranging from 2 to 15 liters on hospital days 0 to 14. Of these 20 patients, two (10%) were intubated and died, and none remain hospitalized. Among 60 propensity-matched controls based on age, sex, body mass index, coronary artery disease, troponin, D-dimer, hospital day, and oxygen requirement, 18 (30%) were intubated, 13 (22%) have died, and three (5%) remain hospitalized (with one still requiring mechanical ventilation). Assuming no further deaths among controls, we estimate that the adjusted subdistribution hazard ratios were 0.37 for inpatient mortality (p=0.14) and 0.26 for mechanical ventilation (p=0.046). Conclusions: Though limited by its study design, our results demonstrate the safety of hyperbaric oxygen among COVID-19 patients and strongly suggests the need for a well-designed, multi-center randomized control trial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.