The different configurations of maternal and paternal chromatin, acquired during oogenesis and spermatogenesis, have to be rearranged after fertilization to form a functional embryonic genome. In the paternal genome, nucleosomal chromatin domains are re-established after the protamine-to-histone exchange. We investigated the formation of constitutive heterochromatin (cHC) in human preimplantation embryos. Our results show that histones carrying canonical cHC modifications are retained in cHC regions of sperm chromatin. These modified histones are transmitted to the oocyte and contribute to the formation of paternal embryonic cHC. Subsequently, the modifications are recognized by the H3K9/HP1 pathway maternal chromatin modifiers and propagated over the embryonic cleavage divisions. These results are in contrast to what has been described for mouse embryos, in which paternal cHC lacks canonical modifications and is initially established by Polycomb group proteins. Our results show intergenerational epigenetic inheritance of the cHC structure in human embryos.
We conclude that defective deacetylation during human female meiosis increases with maternal age and is correlated with misaligned chromosomes. As chromosome misalignment predisposes to segregation errors, our data imply that defective regulation of histone deacetylation could be an important factor in age-related aneuploidy.
Immunofluorescence has been widely used to study histone modification dynamics and chromosome-associated proteins that regulate the segregation of chromosomes during cell divisions. Since many of these regulatory proteins interact (in)directly to exert their proper function, it is of interest to detect these proteins simultaneously, to establish their spatiotemporal relation. However, the detection of multiple epitopes on the same material is limited by the availability of antibodies derived from different host species. For Western blot membranes, buffers were developed to remove antibodies after the first round of detection and enable a second round of detection. In this study, we establish that this "stripping" principle can also be applied for sequential immunofluorescence on chromosome preparations. We first adapted a drying down fixation technique for the use on cultured cells from different primary cells and cell lines. These chromosome spreads were subsequently used to optimize the stripping procedure for this application. We investigated feasibility and reliability of detection of histones and their posttranslational modifications as well as chromatin interacting proteins in two subsequent rounds of immunofluorescence. We conclude that this method is a reliable option when spatial resolution and co-expression need to be investigated and the material or the choice of antibodies is limited.
This study was funded by the Portuguese Fundação para a Ciência e Tecnologia and the Netherlands Organization for Scientific Research. The authors have no conflicts of interest to declare.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.