Mycobacterium tuberculosis (MTB) and non-tuberculous mycobacteria (NTM) are formidable causes of lung diseases throughout the world. While MTB is considered to be more virulent than NTM, host factors also play a key role in disease development.To elucidate whether there are differential immune responses to various mycobacteria, THP-1 macrophages were temporally infected with MTB H37Rv or with four different NTM species. We found that cells infected with MTB had greater bacterial burden and p65 nuclear factor-kappa B (NF-κB) activation than cells infected with NTM. There was also differential expression of mRNA for interleukin-1-β (IL-1β), IL-8, IL-10, and tumor necrosis factor-alpha (TNF-α) with no distinct pattern of mRNA expression among the different mycobacteria. In contrast, at the protein level, some generalizations can be made of the cytokines and chemokines expressed. Compared to uninfected cells, the rapid-growing Mycobacterium smegmatis but not Mycobacterium abscessus induced significantly greater pro-inflammatory cytokines and IL-10, whereas both NTM individually induced greater levels of chemokines. Compared to uninfected control cells, the two slow-growing NTM and MTB differentially induced cytokine expression with Mycobacterium avium inducing more pro-inflammatory cytokines and IL-10, whereas M. avium, Mycobacterium intracellulare, and MTB inducing greater but similar levels of chemokines. MTB-infected THP-1 cells also demonstrated lower level of phagosomelysosome fusion and apoptosis than NTM-infected cells while there were differences in these macrophage functions among the NTM species. Interestingly, M. intracellulare, M. avium, and MTB have similar levels of autophagosome formation, but the levels displayed by all three were lower than for M. smegmatis and M. abscessus. This study demonstrates the differences in bacterial burden and macrophage effector functions among several clinically relevant mycobacterial species. Such disparities may, in part, account for differences in clinical outcomes among patients infected with various species of NTM as has been seen for different strains of MTB.
Objectives: Oral candidiasis is the most common opportunistic fungal infection of oral mucosa and results from an overgrowth of Candida, especially Candida albicans. The potential anti-C. albicans and cytotoxicity of punicalagin (PCG), isolated from Punica granatum, alone or with nystatin (NYS) were evaluated. Methods: Activity of compounds alone or in combinations was determined against two C. albicans strains (ATCC 90028 and SC5314). Minimal inhibitory concentration (MIC)-50 and Minimum Fungicidal Concentration (MFC) were assessed by XTT assay and CFU counts, respectively. For combinations, determination of fractional inhibitory concentration index was performed. Ergosterol pathway was investigated as a possible PCG antifungal mechanism. Cytotoxicity assays were undertaken on human primary oral keratinocytes and gingival fibroblasts incubated with antifungal concentrations of PCG and/or NYS for 24 hr. Results: Combination of NYS and PCG increased antifungal efficacy, compared with compounds tested alone. Combinations 4 (PCG-6.25 μg/ml; NYS-3.9 μg/ml) and 5 (PCG-12.5 μg/ml; NYS-1.95 μg/ml) were more effective since they reduced the MIC-50 of PCG (50 μg/ml) by 8 and 4 times, respectively, increased the candidal inhibition and nullified the PCG cytotoxicity for keratinocytes. PCG antifungal mechanism did not involve ergosterol biosynthesis pathway. Conclusions: The favorable outcomes for combination of PCG and NYS encourage further testing this therapeutic strategy against C. albicans.
Aim: This study investigated the effect of denture liners surface modification with Equisetum giganteum (EG) and Punica granatum (PG) on Candida albicans biofilm inhibition supposing its usage as a sustained-release therapeutical delivery system for Candida-associated denture stomatitis. Materials & methods: C. albicans biofilm (SC5314 or ATCC 90028) was formed on soft liners superficially modified by a primer mixed to drugs at minimum inhibitory concentrations (0.100 g for EG and PG or 0.016 g for nystatin per ml of primer). After 24 h, 7 or 14 days, antibiofilm activity was evaluated by colony-forming unit counts. Results: Not all groups were equi-efficient to nystatin after 24 h and 7 days. After 14 days, EG and PG efficacies were not different from nystatin (almost 100% inhibition). Conclusion: The proposed protocol presents a promising option to allopathic drugs for Candida-associated denture stomatitis treatment.
Rationale: Hereditary angioedema (HAE) is a potentially life-threatening illness most commonly due to deficiency or dysfunction of C1-esterase inhibitor (C1-INH). While specific treatments are available to thwart acute exacerbations, they are extremely costly and some can be associated with rare but serious side effects. The heparins are long known to augment C1-INH activity and case reports / series have documented their efficacy in treating HAE. Objective: to determine if unfractionated heparin and two low-molecular weight heparins (enoxaparin and nadroparin) can augment C1-INH activity ex vivo in the sera of patients with HAE and in an in vitro biochemical assay. Methods: C1-INH activity in the absence or presence of the heparin formulations were analyzed by two different methods. To measure C1-INH activity ex vivo, a commercially available assay was utilized with patient sera, excess amounts of C1s, and a substrate of C1s which, upon cleavage by C1s, produces a chromogenic product. To determine biochemically the C1-INH activity in vitro, a pharmacologic grade C1-INH, recombinant C1s (C1s-CCP12SP), and a peptide substrate of C1s were employed. Microscale thermophoresis was used to determine whether C1-INH binds to heparin. Main results: in patient sera, nadroparin was superior to enoxaparin and unfractionated heparin in augmenting C1-INH activity, followed by enoxaparin and then unfractionated heparin. In the in vitro biochemical assay, all three heparins augmented C1-INH-C1s binding linearly in a dose-dependent fashion. Microscale thermophoresis assay demonstrated that nadroparin binds to C1-INH, providing a mechanism by which heparin facilitates the interaction between C1-INH and the proteases known to produce bradykinin, the mediator of HAE. Conclusion: low-molecular weight heparin augments C1-INH activity and should be studied as a potential treatment for acute HAE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.