Receptors for Wingless and other signalling molecules of the Wnt gene family have yet to be identified. We show here that cultured Drosophila cells transfected with a novel member of the frizzled gene family in Drosophila, Dfz2, respond to added Wingless protein by elevating the level of the Armadillo protein. Moreover, Wingless binds to Drosophila or human cells expressing Dfz2. These data demonstrate that Dfz2 functions as a Wingless receptor, and they imply, in general, that Frizzled proteins are receptors for the Wnt signalling molecules.
Williams syndrome (WS) is a developmental disorder with a characteristic personality and cognitive profile that is associated, in most cases, with a 2 Mb deletion of part of chromosome band 7q11.23. By applying CpG island cloning methods to cosmids from the deletion region, we have identified a new gene, called FZD3. Dosage blotting of DNA from 11 WS probands confirmed that it is located within the commonly deleted region. Sequence comparisons revealed that FZD3, encoding a 591 amino acid protein, is a novel member of a seven transmembrane domain receptor family that are mammalian homologs of the Drosophila tissue polarity gene frizzled. FZD3 is expressed predominantly in brain, testis, eye, skeletal muscle and kidney. Recently, frizzled has been identified as the receptor for the wingless (wg) protein in Drosophila. We show that Drosophila as well as human cells, when transfected with FZD3 expression constructs, bind Wg protein. In mouse, the wg homologous Wnt1 gene is involved in early development of a large domain of the central nervous system encompassing much of the midbrain and rostral metencephalon. The potential function of FZD3 in transmitting a Wnt protein signal in the human brain and other tissues suggests that heterozygous deletion of the FZD3 gene could contribute to the WS phenotype.
The sexually dimorphic characteristics of the reproductive tract in Drosophila require that cells of the gonad and the genital disc be assigned sex-specific fates. We report here that DWnt-2, a secreted glycoprotein related to wingless, is a signal required for cell fate determination and morphogenesis in the developing male reproductive tract. Testes from DWnt-2 null mutant flies lack the male-specific pigment cells of the reproductive tract sheath and the muscle precursors of the sheath fail to migrate normally. However, other cell types of the testis are unaffected. DWnt-2 is expressed in somatic cells of the gonad throughout development, implicating it as a signal that can influence pigment cell fate directly. Indeed, the ectopic expression of DWnt-2 in females results in the appearance of male-specific pigment cells in otherwise morphologically normal ovaries. Thus, the presence of pigment cells is a sexually dimorphic trait that is controlled by DWnt-2 expression. DWnt-2 is also expressed in regions of the male genital disc and gonad, which we have identified as sites of contact with muscle precursor cells, suggesting that secreted DWnt-2 protein is a signal for the migration or attachment of these cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.