Factors driving the increase in drug-resistant tuberculosis (TB) in the Eastern Cape Province, South Africa, are not understood. A convenience sample of 309 drug-susceptible and 342 multidrug-resistant (MDR) TB isolates, collected July 2008-July 2009, were characterized by spoligotyping, DNA fingerprinting, insertion site mapping, and targeted DNA sequencing. Analysis of molecularbased data showed diverse genetic backgrounds among drug-sensitive and MDR TB sensu stricto isolates in contrast to restricted genetic backgrounds among pre-extensively drug-resistant (pre-XDR) TB and XDR TB isolates. Second-line drug resistance was significantly associated with the atypical Beijing genotype. DNA fingerprinting and sequencing demonstrated that the pre-XDR and XDR atypical Beijing isolates evolved from a common progenitor; 85% and 92%, respectively, were clustered, indicating transmission. Ninety-three percent of atypical XDR Beijing isolates had mutations that confer resistance to 10 anti-TB drugs, and some isolates also were resistant to para-aminosalicylic acid. These findings suggest the emergence of totally drug-resistant TB.
Genotyping of multidrug-resistant (MDR) Mycobacterium tuberculosis strains isolated from tuberculosis (TB) patients in fourSouth African provinces (Western Cape, Eastern Cape, KwaZulu-Natal, and Gauteng) revealed a distinct population structure of the MDR strains in all four regions, despite the evidence of substantial human migration between these settings. In all analyzed provinces, a negative correlation between strain diversity and an increasing level of drug resistance (from MDR-TB to extensively drug-resistant TB [XDR-TB]) was observed. Strains predominating in XDR-TB in the Western and Eastern Cape and KwaZulu-Natal Provinces were strongly associated with harboring an inhA promoter mutation, potentially suggesting a role of these mutations in XDR-TB development in South Africa. Approximately 50% of XDR-TB cases detected in the Western Cape were due to strains probably originating from the Eastern Cape. This situation may illustrate how failure of efficient health care delivery in one setting can burden health clinics in other areas.
The aminoglycosides amikacin (AMK)/kanamycin (KAN) and the cyclic polypeptide capreomycin (CAP) are important injectable drugs in the treatment of multidrug-resistant tuberculosis. Cross-resistance among these drug classes occurs and information on the minimum inhibitory concentrations (MICs), above the normal wild-type distribution, may be useful in identifying isolates that are still accessible to drug treatment. Isolates from the Eastern Cape Province of South Africa were subjected to DNA sequencing of the rrs (1400-1500 region) and tlyA genes. Sequencing data were compared with (i) conventional susceptibility testing at standard critical concentrations (CCs) on Middlebrook 7H11 agar and (ii) MGIT 960-based MIC determinations to assess the presence of AMK- and CAP-resistant mutants. Isolates with an rrs A1401G mutation showed high-level resistance to AMK (>20 mg/L) and decreased phenotypic susceptibility to CAP (MICs 10-15 mg/L). The MICs of CAP were below the bioavailability of the drug, which suggests that it may still be effective against multi- or extensively drug resistant tuberculosis [M(X)DR-TB]. Agar-based CC testing was found to be unreliable for resistance recognition of CAP in particular.
BackgroundSouth Africa shows one of the highest global burdens of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB). Since 2002, MDR-TB in South Africa has been treated by a standardized combination therapy, which until 2010 included ofloxacin, kanamycin, ethionamide, ethambutol and pyrazinamide. Since 2010, ethambutol has been replaced by cycloserine or terizidone. The effect of standardized treatment on the acquisition of XDR-TB is not currently known.MethodsWe genetically characterized a random sample of 4,667 patient isolates of drug-sensitive, MDR and XDR-TB cases collected from three South African provinces, namely, the Western Cape, Eastern Cape and KwaZulu-Natal. Drug resistance patterns of a subset of isolates were analyzed for the presence of commonly observed resistance mutations.ResultsOur analyses revealed a strong association between distinct strain genotypes and the emergence of XDR-TB in three neighbouring provinces of South Africa. Strains predominant in XDR-TB increased in proportion by more than 20-fold from drug-sensitive to XDR-TB and accounted for up to 95% of the XDR-TB cases. A high degree of clustering for drug resistance mutation patterns was detected. For example, the largest cluster of XDR-TB associated strains in the Eastern Cape, affecting more than 40% of all MDR patients in this province, harboured identical mutations concurrently conferring resistance to isoniazid, rifampicin, pyrazinamide, ethambutol, streptomycin, ethionamide, kanamycin, amikacin and capreomycin.ConclusionsXDR-TB associated genotypes in South Africa probably were programmatically selected as a result of the standard treatment regimen being ineffective in preventing their transmission. Our findings call for an immediate adaptation of standard treatment regimens for M/XDR-TB in South Africa.
Objectives Limited data exist on clinical associations and genotypic correlates of linezolid resistance in Mycobacterium tuberculosis. We aimed to describe mutations and clinical factors associated with phenotypic linezolid resistance from patients with drug-resistant TB at two public sector facilities in South Africa. Methods Adults and adolescents with treatment failure (culture positivity ≥4 months) on a linezolid-containing regimen were retrospectively identified. Phenotypic resistance, as defined by a linezolid MIC >1 mg/L, was assessed for retrieved isolates using broth microdilution. Targeted sequencing of rrl and rplC was performed, irrespective of growth on subculture. Results Thirty-nine patients with linezolid-based treatment failure were identified, 13 (33%) of whom had phenotypic or genotypic linezolid resistance after a median duration of 22 months (range = 7–32) of linezolid therapy. Paired MIC testing and genotyping was performed on 55 unique isolates. All isolates with phenotypic resistance (n = 16) were associated with known resistance mutations, most frequently due to the T460C substitution in rplC (n = 10); rrl mutations included G2814T, G2270C/T and A2810C. No mutations were detected in isolates with MICs at or below the critical concentration. Conclusions Linezolid resistance occurred in a third of patients with drug-resistant TB and treatment failure. Resistance occurred late and was predicted by a limited number of mutations in rrl and rplC. Screening for genotypic resistance should be considered for patients with a positive culture after 4 months of linezolid therapy in order to optimize treatment and avoid the toxicity of ineffective linezolid therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.