Quantitative PCR (Q-PCR or real-time PCR) approaches are now widely applied in microbial ecology to quantify the abundance and expression of taxonomic and functional gene markers within the environment. Q-PCR-based analyses combine 'traditional' end-point detection PCR with fluorescent detection technologies to record the accumulation of amplicons in 'real time' during each cycle of the PCR amplification. By detection of amplicons during the early exponential phase of the PCR, this enables the quantification of gene (or transcript) numbers when these are proportional to the starting template concentration. When Q-PCR is coupled with a preceding reverse transcription reaction, it can be used to quantify gene expression (RT-Q-PCR). This review firstly addresses the theoretical and practical implementation of Q-PCR and RT-Q-PCR protocols in microbial ecology, highlighting key experimental considerations. Secondly, we review the applications of (RT)-Q-PCR analyses in environmental microbiology and evaluate the contribution and advances gained from such approaches. Finally, we conclude by offering future perspectives on the application of (RT)-Q-PCR in furthering understanding in microbial ecology, in particular, when coupled with other molecular approaches and more traditional investigations of environmental systems.
Although parasuicidal behavior in adolescence is poorly understood, evidence suggests that it may be a developmental precursor of borderline personality disorder~BPD!. Current theories of both parasuicide and BPD suggest that emotion dysregulation is the primary precipitant of self-injury, which serves to dampen overwhelmingly negative affect. To date, however, no studies have assessed endophenotypic markers of emotional responding among parasuicidal adolescents. In the present study, we compare parasuicidal adolescent girls~n ϭ 23! with age-matched controls~n ϭ 23! on both psychological and physiological measures of emotion regulation and psychopathology. Adolescents, parents, and teachers completed questionnaires assessing internalizing and externalizing psychopathology, substance use, trait affectivity, and histories of parasuicide. Psychophysiological measures including electrodermal responding~EDR!, respiratory sinus arrhythmia, and cardiac pre-ejection period~PEP! were collected at baseline, during negative mood induction, and during recovery. Compared with controls, parasuicidal adolescents exhibited reduced respiratory sinus arrhythmia~RSA! at baseline, greater RSA reactivity during negative mood induction, and attenuated peripheral serotonin levels. No between-group differences on measures of PEP or EDR were found. These results lend further support to theories of emotion dysregulation and impulsivity in parasuicidal teenage girls.
Estuarine systems are the major conduits for the transfer of nitrate from agricultural and other terrestrialanthropogenic sources into marine ecosystems. Within estuarine sediments some microbially driven processes (denitrification and anammox) result in the net removal of nitrogen from the environment, while others (dissimilatory nitrate reduction to ammonium) do not. In this study, molecular approaches have been used to investigate the diversity, abundance, and activity of the nitrate-reducing communities in sediments from the hypernutrified Colne estuary, United Kingdom, via analysis of nitrate and nitrite reductase genes and transcripts. Sequence analysis of cloned PCR-amplified narG, napA, and nrfA gene sequences showed the indigenous nitrate-reducing communities to be both phylogenetically diverse and also divergent from previously characterized nitrate reduction sequences in soils and offshore marine sediments and from cultured nitrate reducers. In both the narG and nrfA libraries, the majority of clones (48% and 50%, respectively) were related to corresponding sequences from delta-proteobacteria. A suite of quantitative PCR primers and TaqMan probes was then developed to quantify phylotype-specific nitrate (narG and napA) and nitrite reductase (nirS and nrfA) gene and transcript numbers in sediments from three sites along the estuarine nitrate gradient. In general, both nitrate and nitrite reductase gene copy numbers were found to decline significantly (P < 0.05) from the estuary head towards the estuary mouth. The development and application, for the first time, of quantitative reverse transcription-PCR assays to quantify mRNA sequences in sediments revealed that transcript numbers for three of the five phylotypes quantified were greatest at the estuary head.
Quantitative polymerase chain reaction (Q-PCR) amplification is widely applied for determining gene and transcript numbers within environmental samples. This research evaluated Q-PCR reproducibility via TaqMan assays quantifying 16S rRNA gene and transcript numbers in sediments, within and between replicate Q-PCR assays. Intra-assay variation in 16S rRNA gene numbers in replicate DNA samples was low (coefficients of variation; CV from 3.2 to 5.2%). However, variability increased using replicated standard curves within separate Q-PCR assays (CV from 11.2% to 26%), indicating absolute comparison of gene numbers between Q-PCR assays was less reliable. 16S rRNA transcript quantification was evaluated using standard curves of diluted RNA or cDNA (before, or following, reverse transcription). These standard curves were statistically different with cDNA-derived curves giving higher r(2) values and Q-PCR efficiencies. Template concentrations used in Q-PCR also affected 16S rRNA gene and transcript numbers. For DNA, 10(-3) dilutions yielded higher gene numbers than 10(-1) and 10(-2) dilutions. Conversely, RNA template dilution reduced numbers of transcripts detected. Finally, different nucleic acid isolation methods also resulted in gene and transcript number variability. This research demonstrates Q-PCR determination of absolute numbers of genes and transcripts using environmental nucleic acids should be treated cautiously.
Estuarine sediments are the location for significant bacterial removal of anthropogenically derived inorganic nitrogen, in particular nitrate, from the aquatic environment. In this study, rates of benthic denitrification (DN), dissimilatory nitrate reduction to ammonium (DNRA), and anammox (AN) at three sites along a nitrate concentration gradient in the Colne estuary, United Kingdom, were determined, and the numbers of functional genes (narG, napA, nirS, and nrfA) and corresponding transcripts encoding enzymes mediating nitrate reduction were determined by reverse transcription-quantitative PCR. In situ rates of DN and DNRA decreased toward the estuary mouth, with the findings from slurry experiments suggesting that the potential for DNRA increased while the DN potential decreased as nitrate concentrations declined. AN was detected only at the estuary head, accounting for ϳ30% of N 2 formation, with 16S rRNA genes from anammox-related bacteria also detected only at this site. Numbers of narG genes declined along the estuary, while napA gene numbers were stable, suggesting that NAP-mediated nitrate reduction remained important at low nitrate concentrations. nirS gene numbers (as indicators of DN) also decreased along the estuary, whereas nrfA (an indicator for DNRA) was detected only at the two uppermost sites. Similarly, nitrate and nitrite reductase gene transcripts were detected only at the top two sites. A regression analysis of log(n ؉ 1) process rate data and log(n ؉ 1) mean gene abundances showed significant relationships between DN and nirS and between DNRA and nrfA. Although these log-log relationships indicate an underlying relationship between the genetic potential for nitrate reduction and the corresponding process activity, fine-scale environmentally induced changes in rates of nitrate reduction are likely to be controlled at cellular and protein levels.Estuaries are major conduits for the transport of anthropogenically derived nitrogen (e.g., from fertilizer runoff and from wastewater treatment plants) from land to sea (18,20). Estuarine sediments are now recognized as being an important location for the removal of inorganic nitrogen from this environment via benthic nitrate reduction to nitrogenous gases (21). Previously, we have utilized the isotope-pairing technique (22) to investigate rates of denitrification (DN) of nitrate to N 2 O and N 2 along the nitrate and salinity gradients in the hypernutrified Colne estuary, United Kingdom, and demonstrated that DN rates are highest at the estuary head, where nitrate levels are also at their highest (7, 9). However, DN represents only one of three key pathways relevant to nitrate reduction, with a recent review suggesting that the importance of DN in aquatic systems may be overstated (3). A substantial proportion of nitrate may alternatively be converted to ammonium (1, 16, 17) via dissimilatory nitrate reduction to ammonium (DNRA), in which case inorganic nitrogen is retained within the aquatic environment. Nitrite, usually derived from nitrate reduc...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.