In the last decade, postsecondary institutions have seen a notable increase in makerspaces on their campuses and the integration of these spaces into engineering programs. Yet research into the efficacy of university-based makerspaces is sparse. We contribute to this nascent body of research in reporting on findings from a phenomenological study on the perceptions of faculty, staff, and students concerning six university-based makerspaces in the United States. We discuss the findings using a framework of heterogeneous engineering (integration of the social and technical aspects of engineering practice). Various physical, climate, and programmatic features of makerspaces were read as affordances for students’ development of engineering practices and their continued participation and persistence in engineering. We discuss the potential of makerspaces in helping students develop knowledge, skills, and proclivities that may support their attending to especially wicked societal problems, such as issues of sustainability. We offer implications for makerspace administrators, engineering program leaders, faculty, and staff, as well as those developing and delivering professional development for faculty and staff, to better incorporate makerspaces into the university engineering curriculum.
has a BS from Colorado State University, a BA from the Evergreen State College, a MEd from Western Washington University, and a PhD in educational psychology from UNLV. His scholarly interests include all areas of STEM teaching and learning, inservice and preservice teacher professional development, program evaluation, multidisciplinary research, and conceptual change. Nadelson uses his over 20 years of high school and college math, science, computer science, and engineering teaching to frame his research on STEM teaching and learning. Nadelson brings a unique perspective of research, bridging experience with practice and theory to explore a range of interests in STEM teaching and learning.
His scholarly interests include all areas of STEM teaching and learning, inservice and preservice teacher professional development, program evaluation, multidisciplinary research, and conceptual change. Nadelson uses his over 20 years of high school and college math, science, computer science, and engineering teaching to frame his research on STEM teaching and learning. Nadelson brings a unique perspective of research, bridging experience with practice and theory to explore a range of interests in STEM teaching and learning.
University-based makerspaces are receiving increasing attention as promising innovations that may contribute to the development of future engineers. Using a theory of social boundary spaces, we investigated whether the diverse experiences offered at university-based makerspaces may contribute to students’ learning and development of various “soft” or “21st century” skills that go beyond engineering-specific content knowledge. Through interviews with undergraduate student users at two university-based makerspaces in the United States we identified seven different types of boundary spaces (where multiple communities, and the individuals and activities affiliated with those communities, come together). We identified students engaging in the processes of identification, reflection, and coordination, which allowed them to make sense of, and navigate, the various boundary spaces they encountered in the makerspaces. These processes provided students with opportunities to engage with, and learn from, individuals and practices affiliated with various communities and disciplines. These opportunities can lead to students’ development of necessary skills to creatively and collaboratively address interdisciplinary socio-scientific problems. We suggest that university-based makerspaces can offer important developmental experiences for a diverse body of students that may be challenging for a single university department, program, or course to offer. Based on these findings, we recommend university programs and faculty intentionally integrate makerspace activities into undergraduate curricula to support students’ development of skills, knowledge, and practices relevant for engineering as well as 21st century skills more broadly.
This phenomenological study that describes natural science, business, and social science faculty experiences across three institutions during the development of a transdisciplinary curriculum module. Implications for stakeholders interested in future efforts that involve faculty working across disciplines to develop curricula to meet societal needs are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.