Objective- Diabetic macular edema is a major cause of visual impairment. It is caused by blood-retinal barrier breakdown that leads to vascular hyperpermeability. Current therapeutic approaches consist of retinal photocoagulation or targeting VEGF (vascular endothelial growth factor) to limit vascular leakage. However, long-term intravitreal use of anti-VEGFs is associated with potential safety issues, and the identification of alternative regulators of vascular permeability may provide safer therapeutic options. The vascular specific BMP (bone morphogenetic protein) receptor ALK1 (activin-like kinase receptor type I) and its circulating ligand BMP9 have been shown to be potent vascular quiescence factors, but their role in the context of microvascular permeability associated with hyperglycemia has not been evaluated. Approach and Results- We investigated Alk1 signaling in hyperglycemic endothelial cells and assessed whether BMP9/Alk1 signaling could modulate vascular permeability. We show that high glucose concentrations impair Alk1 signaling, both in cultured endothelial cells and in a streptozotocin model of mouse diabetes mellitus. We observed that Alk1 signaling participates in the maintenance of vascular barrier function, as Alk1 haploinsufficiency worsens the vascular leakage observed in diabetic mice. Conversely, sustained delivery of BMP9 by adenoviral vectors significantly decreased the loss of retinal barrier function in diabetic mice. Mechanistically, we demonstrate that Alk1 signaling prevents VEGF-induced phosphorylation of VE-cadherin and induces the expression of occludin, thus strengthening vascular barrier functions. Conclusions- From these data, we suggest that by preventing retinal vascular permeability, BMP9 could serve as a novel therapeutic agent for diabetic macular edema.
Diabetes-related complications are a significant source of morbidity and mortality worldwide. Diabetic kidney disease is a frequent microvascular complication and a primary cause of kidney failure in patients with diabetes. The glomerular filtration barrier is composed of 3 layers: the endothelium, glomerular basement membrane, and podocytes. Podocytes and the endothelium communicate through molecular crosstalk to maintain filtration at the glomerular filtration barrier. Chronic hyperglycemia affects all 3 layers of the glomerular filtration barrier, as well as the molecular crosstalk that occurs between the 2 cellular layers. One of the earliest events following chronic hyperglycemia is endothelial cell dysfunction. Early endothelial damage is associated with progression of diabetic kidney disease. However, current therapies are based in controlling glycemia and arterial blood pressure without targeting endothelial dysfunction. Disruption of the endothelial cell layer also alters the molecular crosstalk that occurs between the endothelium and podocytes. This review discusses both the physiologic and pathologic communication that occurs at the glomerular filtration barrier. It examines how these signaling components contribute to podocyte foot effacement, podocyte detachment, and the progression of diabetic kidney disease.
Endothelial dysfunction has been shown to play an important role in the pathogenesis of glomerular damage during diabetic kidney disease (DKD). As such, a better understanding of the molecular mechanisms involved in glomerular endothelial dysfunctions could provide novel therapeutic strategies for the prevention of DKD. We have previously shown that Alk1/BMP9 signaling plays an important function to maintain vascular integrity in diabetic animals. As such, we evaluated the effects of Alk1 suppression on glomerular endothelial function in diabetic mice. In the present study, we used mice with conditional heterozygote deletion of Alk1 in the endothelium (Alk1ΔEC) to evaluate the role of Alk1 on kidney function during STZ-induced diabetes. DKD was investigated in diabetic control and Alk1ΔEC mice euthanized eight weeks after the onset of diabetes. We showed that Alk1 expression is reduced in the glomeruli of human DKD patients. While renal function was not altered in Alk1ΔEC non-diabetic mice, we showed that Alk1 haploinsufficiency in the glomerular endothelium leads to microalbuminuria, thickening of the glomerular basement membrane, glomerular apoptosis and podocyte loss in diabetic mice. These data suggest that Alk1 is important for the proper function of glomerular endothelial cells and that decreased Alk1 combined with chronic hyperglycemia can impair renal function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.