Accurately quantifying species' area requirements is a prerequisite for effective area-based conservation. This typically involves collecting tracking data on species of interest and then conducting home-range analyses. Problematically, autocorrelation in tracking data can result in space needs being severely underestimated. Based on the previous work, we hypothesized the magnitude of underestimation varies with body mass, a relationship that could have serious conservation implications. To evaluate this hypothesis for terrestrial mammals, we estimated home-range areas with global positioning system (GPS) locations from 757 individuals across 61 globally distributed mammalian species with body masses ranging from 0.4 to 4000 kg. We then applied block cross-validation to quantify bias in empirical home-range estimates. Area requirements of mammals <10 kg were underestimated by a mean approximately15%, and species weighing approximately100 kg were underestimated by approximately50% on average. Thus, we found area estimation was subject to autocorrelation-induced bias that was worse for large species. Combined with the fact that extinction risk increases as body mass increases, the allometric scaling of bias we observed suggests the most threatened species are also likely to be those with the least accurate home-range estimates. As a correction, we tested whether data thinning or autocorrelation-informed home-range estimation minimized the scaling effect of autocorrelation on area estimates. Data thinning required an approximately93% data loss to achieve statistical independence with 95% confidence and was, therefore, not a viable solution. In contrast, autocorrelation-informed home-range estimation resulted in consistently accurate estimates irrespective of mass. When relating body mass to home range size, we detected that correcting for autocorrelation resulted in a scaling exponent significantly >1, meaning the scaling of the relationship changed substantially at the upper end of the mass spectrum.
Xenarthrans—anteaters, sloths, and armadillos—have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, 10 anteaters, and 6 sloths. Our data set includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the southern United States, Mexico, and Caribbean countries at the northern portion of the Neotropics, to the austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n = 5,941), and Cyclopes sp. have the fewest (n = 240). The armadillo species with the most data is Dasypus novemcinctus (n = 11,588), and the fewest data are recorded for Calyptophractus retusus (n = 33). With regard to sloth species, Bradypus variegatus has the most records (n = 962), and Bradypus pygmaeus has the fewest (n = 12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other data sets of Neotropical Series that will become available very soon (i.e., Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans data set. Please cite this data paper when using its data in publications. We also request that researchers and teachers inform us of how they are using these data.
The establishment of protected areas (PAs) is a central strategy for global biodiversity conservation. While the role of PAs in protecting habitat has been highlighted, their effectiveness at protecting mammal communities remains unclear. We analyzed a global dataset from over 8671 camera traps in 23 countries on four continents that detected 321 medium‐ to large‐bodied mammal species. We found a strong positive correlation between mammal taxonomic diversity and the proportion of a surveyed area covered by PAs at a global scale (β = 0.39, 95% confidence interval [CI] = 0.19–0.60) and in Indomalaya (β = 0.69, 95% CI = 0.19–1.2), as well as between functional diversity and PA coverage in the Nearctic (β = 0.47, 95% CI = 0.09–0.85), after controlling for human disturbances and environmental variation. Functional diversity was only weakly (and insignificantly) correlated with PA coverage at the global scale (β = 0.22, 95% CI = −0.02–0.46), pointing to a need to better understand the functional response of mammal communities to protection. Our study provides important evidence of the global effectiveness of PAs in conserving terrestrial mammals and emphasizes the critical role of area‐based conservation in a post‐2020 biodiversity framework.
Este trabajo presenta una síntesis actualizada del conocimiento de la diversidad y distribución de 11 órdenes de mamíferos del Perú. La información de especies es presentada a nivel de país, ecorregión y por primera vez por departamento. Además, identificamos las especies endémicas para el país y damos los rangos de elevación por especie. Para ello se realizó una revisión exhaustiva tanto de la literatura como de ejemplares en colecciones científicas, además de consultas con especialistas. Aquí, reportamos 191 especies pertenecientes a los órdenes Didelphimorphia (46 spp.), Paucituberculata (2), Sirenia (1), Cingulata (5), Pilosa (8), Primates (42), Lagomorpha (2), Eulipotyphla (3), Carnivora (33), Perissodactyla (2) y Artiodactyla (47, incluyendo 32 cetáceos), de los cuales 22 especies son endémicas para el país. Debido a su alta diversidad y al alto número de cambios taxonómicos los órdenes Chiroptera y Rodentia serán tratados separadamente en futuros artículos. Los registros de especies presentadas en este trabajo, aunado a los reportes recientes de murciélagos (189 especies) y roedores (189 especies) totalizan a una diversidad de 569 especies de mamíferos para el Perú. Finalmente, proporcionamos notas taxonómicas de las especies que presentan cambios con respecto a la anterior lista de mamíferos peruanos. Esperamos que este primer listado de mamíferos por departamentos incentive estudios más detallados de la diversidad peruana a nivel regional
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.