Despite extensive culling of common vampire bats in Latin America, lethal human rabies outbreaks transmitted by this species are increasingly recognized, and livestock rabies occurs with striking frequency. To identify the individual and population-level factors driving rabies virus (RV) transmission in vampire bats, we conducted a longitudinal capture–recapture study in 20 vampire bat colonies spanning four regions of Peru. Serology demonstrated the circulation of RV in vampire bats from all regions in all years. Seroprevalence ranged from 3 to 28 per cent and was highest in juvenile and sub-adult bats. RV exposure was independent of bat colony size, consistent with an absence of population density thresholds for viral invasion and extinction. Culling campaigns implemented during our study failed to reduce seroprevalence and were perhaps counterproductive for disease control owing to the targeted removal of adults, but potentially greater importance of juvenile and sub-adult bats for transmission. These findings provide new insights into the mechanisms of RV maintenance in vampire bats and highlight the need for ecologically informed approaches to rabies prevention in Latin America.
Abstract. To determine the generality of avian diversity patterns, we investigated patterns of elevational zonation shown by birds and mammals along the eastern slope of the Andes Mountains in southeastern Peru. The strong environmental gradient sampled, entirely within Peru's Manu National Park and Biosphere Reserve, supports highly diverse faunas. Elevational distributions of 901 bird species, 129 bat species, and twenty‐eight species of native mice exhibit contrasting patterns in species richness, species composition, and species turnover. Birds and bats showed smooth declines of species richness with elevation, whereas the richness of mouse assemblages was unrelated to elevation. For all three groups, the greatest differences were between lowland and highland faunas, although cutoff points for this contrast varied among groups (≈ 500 m for birds, 750 m for bats, and 1000 m for mice). Differences in composition also separated bird and bat faunas on either side of c. 1400 m (the boundary between montance forest and cloud forest); for mice, this faunal transition may take place nearer to 2000 m. Bird and bat faunas lacked the more discrete zonations suggested for mouse assemblages, as indicated by elevational range profiles and nested subset analyses. Distinct highland assemblages are apparent in two‐dimensional histograms of range limits of birds and mice, but not for bats. Highland bat species occupy broader elevational ranges than lowland bat species, but for both birds and mice, species at intermediate elevations had the broadest amplitudes. Finally, clumping of range maxima and minima along the gradient identified zones of pronounced species turnover in each group, but these were generally not strongly associated with the locations of ecotones. Differences in zonation of these groups appear to reflect their different biological attributes and phylogenetic histories. Such differences obviously complicate discussions of ‘general’ diversity patterns, and limit the usefulness of birds to forecast or predict diversity patterns in other more poorly known groups—other groups may show elevated diversity and endemism in areas where avian diversity patterns appear unremarkable. The pronounced contrasts between bats and mice, and the generally intermediate character of avian patterns, suggest that future analyses might profitably partition birds into finer, more homogeneous groups of historically and/or ecologically similar species. Group differences in zonation may ultimately prove explicable with information on both species‐abundance patterns and resource distributions.
ResumenSe presenta una lista comentada de los mamíferos terrestres, acuáticos y marinos nativos de Perú, incluyendo sus nombres comunes, la distribución por ecorregiones y los estados de amenaza según la legislación nacional vigente y algunos organismos internacionales. Se documenta 508 especies nativas, en 13 órdenes, 50 familias y 218 géneros; resultando el Perú como el tercer país con la mayor diversidad de especies en el Nuevo Mundo después de Brasil y México, así como quinto en el mundo. Esta diversidad incluye a 40 didelfimorfos, 2 paucituberculados, 1 sirenio, 6 cingulados, 7 pilosos, 39 primates, 162 roedores, 1 lagomorfo, 2 soricomorfos, 165 quirópteros, 34 carnívoros, 2 perisodáctilos y 47 cetartiodáctilos. Los roedores y murciélagos (327 especies) representan casi las dos terceras partes de la diversidad (64%). Cinco géneros y 65 especies (12,8%) son endémicos para Perú, siendo la mayoría de ellos roedores (45 especies, 69,2%). La mayoría de especies endémicas se encuentra restringida a las Yungas de la vertiente oriental de los Andes (39 especies, 60%) seguida de lejos por la Selva Baja (14 especies, 21,5%). Se comenta la taxonomía de algunas especies, cuando éstas discrepan de la taxonomía aceptada. AbstractWe present an annotated list for all land, aquatic and marine mammals known to occur in Peru and their distribution by ecoregions. We also present species conservation status according to international organizations and the legal conservation status in Peru. At present, we record 508 species, in 13 orders, 50 families, and 218 genera, making Peru the third most diverse country with regards to mammals in the New World, after Brazil and Mexico, and the fifth most diverse country for mammals in the World. This diversity includes 40 didelphimorphs, 2 paucituberculates, 1 manatee, 6 cingulates, 7 pilosa, 39 primates, 162 rodents, 1 rabbit, 2 soricomorphs, 165 bats, 34 carnivores, 2 perissodactyls, and 47 cetartiodactyls. Bats and rodents (327 species) represent almost two thirds of total diversity (64%) for Peru. Five genera and 65 species (12.8%) are endemics to Peru, with the majority of these being rodents (45 species, 69,2%). Most of the endemic species are restricted to the Yungas of the eastern slope of the Andes (39 species, 60%) followed by Selva Baja (14 species, 21.5%). The taxonomic status of some species is commented on, when those depart from accepted taxonomy. The marsupial Marmosa phaea; the rodents Melanomys caliginosus, M. robustulus, and Echinoprocta rufescens; the shrew Cryptotis equatoris; the bats Anoura fistulata, Phyllostomus latifolius, Artibeus ravus, Cynomops greenhalli, Eumops maurus, and Rhogeessa velilla; and the carnivore Nasuella olivacea are first records of species occurrence in Peru. Finally, we also include a list of 15 non-native species.Keywords: Mammals, Peru, diversity, endemism, conservation. IntroducciónRecientemente, dos volúmenes de gran trascendencia para la mastozoología neotropical han sido publicados: Mammal Species of the World, en su tercera edición po...
At least 193 species of mammals are known to occur within the Manu Biosphere Reserve in south‐eastern Peru, contributing to its stature as one of the world's richest protected areas. Bats (Order Chiroptera) comprise more than 42% (82 species) of this diversity. Analyses of bat capture records over a transect extending more than 3 km in elevation show that most bat species at Manu are widely distributed in the Amazon Basin. Few are montane endemics or are localized in south‐eastern Peru, although exceptions to this generalization include two species new to science. Highland bat faunas tend to be attenuated versions of those found below, and the elevational zonation of bat communities is weak. Species turnover with elevation is monotonic and more‐or‐less smooth, with Jaccard's similarity values falling to 0.5 for sites differing by 750m in elevation. Subtle and orderly change in species composition with elevation is also reflected in the nested‐subset structure of these communities; over 19 different levels, this pattern of hierarchical structure is both striking and highly significant. Elevational ranges of species generally increase with elevation, in accordance with Stevens' extension of ‘Rapoport's rule’ of range amplitude. However, support for ‘Stevens' rule’ may be trivial, given Amazonian richness and Andean impoverishment. Reduced richness and poorly developed endemism in Andean bat communities contrast with patterns shown by sympatric rodent faunas, which are diverse and strongly endemic on the Altiplano and markedly zoned along the Eastern Versant. Contrasts are less sharp with bird communities, which nevertheless exhibit stronger zonation and higher endemicity. Factors responsible for these distinctive distributional patterns are discussed.
The role of bats as potential sources of transmission to humans or as maintenance hosts of leptospires is poorly understood. We quantified the prevalence of leptospiral colonization in bats in the Peruvian Amazon in the vicinity of Iquitos, an area of high biologic diversity. Of 589 analyzed bats, culture (3 of 589) and molecular evidence (20 of 589) of leptospiral colonization was found in the kidneys, yielding an overall colonization rate of 3.4%. Infection rates differed with habitat and location, and among different bat species. Bayesian analysis was used to infer phylogenic relationships of leptospiral 16S ribosomal DNA sequences. Tree topologies were consistent with groupings based on DNA-DNA hybridization studies. A diverse group of leptospires was found in peri-Iquitos bat populations including Leptospira interrogans (5 clones), L. kirschneri (1), L. borgpetersenii (4), L. fainei (1), and two previously undescribed leptospiral species (8). Although L. kirschenri and L. interrogans have been previously isolated from bats, this report is the first to describe L. borgpetersenii and L. fainei infection of bats. A wild animal reservoir of L. fainei has not been previously described. The detection in bats of the L. interrogans serovar Icterohemorrhagiae, a leptospire typically maintained by peridomestic rats, suggests a rodent-bat infection cycle. Bats in Iquitos maintain a genetically diverse group of leptospires. These results provide a solid basis for pursuing molecular epidemiologic studies of bat-associated Leptospira, a potentially new epidemiologic reservoir of transmission of leptospirosis to humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.